無料レポート プレゼントキャンペーン 実施中 : メールサービスに新規登録いただいた方にご用意した無料レポートをご提供

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

スーパーキャパシター材料・技術ロードマップ:2019 - 2039年

Supercapacitor Materials and Technology Roadmap 2019-2039

発行 IDTechEx Ltd. 商品コード 658697
出版日 ページ情報 英文 192 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=114.65円で換算しております。
Back to Top
スーパーキャパシター材料・技術ロードマップ:2019 - 2039年 Supercapacitor Materials and Technology Roadmap 2019-2039
出版日: 2018年09月30日 ページ情報: 英文 192 Pages
概要

スーパーキャパシターの新素材は、大きなビジネスとなり、スーパーキャパシター市場を数10億ドル市場に押し上げるでしょう。

当レポートでは、スーパーキャパシター市場について調査し、材料市場の予測と技術タイムラインを提供しており、電解質、遷移金属酸化物・金属有機構造体 (MOF) の変化するプライオリティ、グラフェンを用いた2Dマテリアルへの新たなアプローチ、およびストラクチュラルスーパーキャパシターの重要な役割などについて分析しています。

第1章 エグゼクティブサマリー・結論

第2章 イントロダクション

第3章 スーパーキャパシター電解質

  • イントロダクション
  • メーカーによって電解質は変化:実例
  • パラメーターの調整:ブリストル大学 (英国)
  • 電極への適合
  • 電極に影響される特質の比較
  • 様々なスーパーキャパシター電解質のキャパシタンス密度
  • 水性電解質の重要性
  • イオン性電解質

第4章 遷移金属酸化物、金属有機構造体 (MOF)

  • 遷移金属酸化物
  • 金属有機構造体 (MOF)

第5章 スーパーキャパシター2D材料

  • 概要
  • 複合原子層物質 (MXenes)

第6章 グラフェン、カーボンナノチューブ、エアロゲル、誘導体

  • 現在はメインストリームが進歩し、ナノチューブの研究が減少
  • カーボンエアロゲル
  • グラフェン

第7章 ストラクチュラルスーパーキャパシター:耐荷重性、スキン、テキスタイル

  • 耐荷重性スーパーキャパシター
  • フレキシブル、伸縮性、およびファブリックスーパーキャパシター
  • 伸縮性ウェアラブルスーパーキャパシター
  • ペーパースーパーキャパシター
  • スーパーキャパシターとしてのフレキシブルプリント基板:ケンブリッジ大学

第8章 スーパーキャパシターの毒性を避ける

  • 概要
  • アセトニトリル
目次

Supercapacitors will be a large market. It will interest suppliers of a wide range of specialty chemicals and added value feedstock. The report, "Supercapacitor Materials and Technology Roadmap 2019-2039" uniquely appraises these and identifies gaps in the market for device variants and new material capabilities. The report notes that lithium-ion batteries were a cottage industry but as they became a large market added value materials companies prospered from making key materials that the device makers could not address. That is ahead for supercapacitors now.

The growth of the supercapacitor business is being be accelerated by new priorities driven by a wider range of potentially large applications and optimisation of new matched materials. That stretches from structural supercapacitors to ones maximising pseudocapacitance for battery-like functions and others replacing general purpose electrolytic capacitors. Many transition metal oxides and other compounds from liquids to ceramics are now in focus.

"Supercapacitor Materials and Technology Roadmap 2019-2039" is a drill down report from the IDTechEx report, "Supercapacitor Markets and Technology 2018-2028". It is part of the acclaimed IDTechEx series on energy storage and on battery elimination.

The new virtuosity is astounding. Some experimental supercapacitors now work from minus 110C to 300C. Power supply versions at 120 Hz are demonstrated. On the other hand, load-bearing supercapacitors are sometimes achieving lighter weight than the dumb structure they replace. Batteries make things heavier but supercapacitors make them lighter - "negative mass" energy storage? Supercapacitor materials just got exciting.

The 180 page IDTechEx report, "Supercapacitor Materials and Technology Roadmap 2019-2039" involves over 60 organisations through the value chain. It has a comprehensive Executive Summary and Conclusions for those with limited time. The many parameters affecting latest competition between capacitors, supercapacitors and batteries are clearly grasped in new spider diagrams and charts. New infograms give the wider applications being targeted, the methods, the materials parameters being optimised and the most promising routes, including much news for 2018 and potential for the future.

There is a materials market forecast and technology timeline. Learn gaps in the market and prioritisation of parameter improvement now needed. The Introduction comprehensively explains the phenomena being optimised and the different structures emerging for supercapacitors and their variants. Learn why pseudocapacitance is becoming better understood and used as a tool in device tailoring. Why are both hierarchical electrode morphologies and the newer exohedral options needed at the different electrodes required for different potential applications? There is no one size fits all. Indeed, electrode-electrolyte matching is essential with aqueous and ionic electrolytes in focus and solid state considered. See detailed charts comparing parameters achieved.

Chapter 3 explores electrolytes as they change radically to new organic and inorganic, liquid and solid forms, with present and planned commercial versions and the new active electrodes they leverage. Why are aqueous and ionic forms gaining market share?

Chapter 4 covers the changing priorities in transition metal oxides and introduces metal organic frameworks. Chapter 5 covers the new approach to 2D materials with graphene very important but only a part of the story, which now embraces MXenes and much more.

Chapter 6 specifically addresses applied versions of graphene, carbon nanotubes and carbon aerogels, the aerogels even enabling impressive load-bearing components. Chapter 7 appraises the important work on structural supercapacitors - load bearing shapes, smart skin, textiles and even paper structures. Learn about stretchable and flexible forms and more. The report closes with a chapter on how poisons will be avoided in future supercapacitors. Throughout, the text is brought alive with commercial and promised device examples and slides from the latest relevant conferences. They reveal how other global experts see progress, mechanisms and future possibilities.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Focus of this report
  • 1.2. Purpose of this report
  • 1.3. Market forecast for supercapacitor active materials
    • 1.3.1. Background
    • 1.3.2. Active materials market forecast for supercapacitors and derivatives $ billion 2019-2039
  • 1.4. Physics of basic uses
    • 1.4.1. Action
    • 1.4.2. The competition between capacitors, supercapacitors and batteries
    • 1.4.3. How basic functions overlap: Cap, supercap, battery
    • 1.4.4. Spectrum of benefits: capacitor to battery 2019
  • 1.5. The reality for production supercapacitors and their derivatives 2019
  • 1.6. The dream for production supercapacitors and their derivatives: power & energy
  • 1.7. The dream for production supercapacitors and their derivatives: other planned benefits
  • 1.8. Improvements that will create large new markets
    • 1.8.1. Prioritisation
  • 1.9. Cost
  • 1.10. Energy density
    • 1.10.1. Options
    • 1.10.2. Electrolyte-electrode routes to desirable parameters shown red
    • 1.10.3. More than creating area
    • 1.10.4. Seeking affordable higher energy density in context 2019-2029
  • 1.11. Self-discharge
  • 1.12. Options for device physics
  • 1.13. Device active structures and gaps in the market
    • 1.13.1. Exohedral active electrodes
  • 1.14. Options for supercapacitor manufacture
  • 1.15. Technology roadmap 2019-2039

2. INTRODUCTION

  • 2.1. Operating principles and construction
    • 2.1.1. EDLC and AEDLC basics
    • 2.1.2. Supercapacitor assembly
    • 2.1.3. Cost and mass breakdown
    • 2.1.4. Capacitance and energy density
    • 2.1.5. Charging
    • 2.1.6. Discharging, cycling, life
    • 2.1.7. Energy density
    • 2.1.8. Voltage vs capacitance offered
  • 2.2. Pseudocapacitance
    • 2.2.1. Outline basics
    • 2.2.2. Inseparable
    • 2.2.3. A deeper look
    • 2.2.4. From electrode and electrolyte
    • 2.2.5. Choice of materials
    • 2.2.6. From structure
    • 2.2.7. Example: Candy cane pseudocapacitor
    • 2.2.8. Spray on Pseudocapacitance
  • 2.3. Understanding fundamental phenomena
  • 2.4. Typical methodology to improve supercapacitors
  • 2.5. Active electrode materials
    • 2.5.1. Hierarchical active electrodes
    • 2.5.2. Exohedral active electrodes
  • 2.6. Separators PALL, Universiti Putra, Dreamweaver
  • 2.7. Supercapacitor materials in action: examples
    • 2.7.1. Examples of nine parameters compared
    • 2.7.2. Comparison by manufacturer: examples
    • 2.7.3. Symmetric hybrid supercapacitor; Yunasko

3. SUPERCAPACITOR ELECTROLYTES

  • 3.1. Introduction
  • 3.2. Electrolytes by manufacturer are changing: examples
  • 3.3. Reconciling parameters: Univ. Bristol, Reading UK, Supercapacitor Materials
    • 3.3.1. Parameter compromises
    • 3.3.2. Radically new options: SuperCapacitor Materials
  • 3.4. Matching to Electrode
  • 3.5. Comparison of properties influenced by electrolyte
  • 3.6. Capacitance density of various supercapacitor electrolytes
  • 3.7. Importance of aqueous electrolytes
    • 3.7.1. Rationale
    • 3.7.2. Aqueous and non aqueous electrolytes compared
    • 3.7.3. Example: Evans Capacitor
    • 3.7.4. Example: Tampere University screen printing
  • 3.8. Ionic electrolytes
    • 3.8.1. Rationale
    • 3.8.2. Covalent basics
    • 3.8.3. Low cost route: natural cellulose in ionic liquid Pyr14TFSI
    • 3.8.4. Example of ionic electrolyte ZapGo UK

4. TRANSITION METAL OXIDES, METAL ORGANIC FRAMEWORKS

  • 4.1. Transition metal oxides
  • 4.2. Metal organic frameworks
    • 4.2.1. Overview
    • 4.2.2. Modular metal-organic framework with highest electron charge mobilities

5. SUPERCAPACITOR 2D MATERIALS

  • 5.1. Overview
  • 5.2. MXenes

6. GRAPHENE, CARBON NANOTUBES, AEROGEL, DERIVATIVES NANJING UNIV. MIT

  • 6.1. Less nanotube work for mainstream advances now
  • 6.2. Carbon aerogel; UST China, Imperial College UK
  • 6.3. Graphene
    • 6.3.1. Overview University of Oregon, NECTEC
    • 6.3.2. Graphene research results CNSI, UCLA Tsinghua Univ.
    • 6.3.3. Specific capacitance vs identified area for graphene-based supercapacitor electrodes by electrolyte type
    • 6.3.4. Curved graphene: Nanotek
    • 6.3.5. Vertically aligned graphene University Grenoble Alpes, CNRS
    • 6.3.6. Aqueous stacked graphene
    • 6.3.7. Graphene CNT supercapacitor: UCLA

7. STRUCTURAL SUPERCAPACITORS: LOAD BEARING, SKIN, TEXTILE

  • 7.1. Load bearing supercapacitors
    • 7.1.1. Imperial College London UK
    • 7.1.2. Queensland University of Technology Australia, Rice University USA
    • 7.1.3. Trinity College Dublin Ireland
    • 7.1.4. Vanderbilt University USA
    • 7.1.5. ZapGo UK
  • 7.2. Flexible, stretchable and fabric supercapacitors
    • 7.2.1. Flexible supercapacitors in tires: Silent Sensors UK
    • 7.2.2. Institute of Nano Science and Technology (INST), Mohali, India
  • 7.3. Stretchable wearable supercapacitors
    • 7.3.1. China and Cambridge University UK
    • 7.3.2. Nanyang TU Singapore
  • 7.4. Paper supercapacitors
    • 7.4.1. Korea University
    • 7.4.2. Rensselaer Polytechnic Institute USA
    • 7.5. Flexible printed circuits as supercapacitors: Cambridge University

8. AVOIDING SUPERCAPACITOR POISONS

  • 8.1. Overview
  • 8.2. Acetonitrile

9. LESSONS FROM RECENT PATENT FILINGS

Back to Top