無料レポート プレゼントキャンペーン 実施中 : メールサービスに新規登録いただいた方にご用意した無料レポートをご提供

株式会社グローバルインフォメーション
TEL: 044-952-0102
市場調査レポート

航空宇宙・防衛向け積層造形・軽量マテリアル (2018 - 2028年)

Additive Manufacturing and Lightweight Materials for Aerospace and Defense 2018-2028

発行 IDTechEx Ltd. 商品コード 654978
出版日 ページ情報 英文 191 Slides
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=113.93円で換算しております。
Back to Top
航空宇宙・防衛向け積層造形・軽量マテリアル (2018 - 2028年) Additive Manufacturing and Lightweight Materials for Aerospace and Defense 2018-2028
出版日: 2018年06月22日 ページ情報: 英文 191 Slides
概要

当レポートでは、航空宇宙・防衛産業向けの積層造形 (AM)・軽量マテリアル市場について調査し、航空宇宙・防衛産業において利用されている現在・新興のプリンター技術タイプ、各積層造形技術の強みと弱み、各プリンターがサポートするマテリアルクラス、主要な市場リーダー企業の積層造形戦略、積層造形の用途、市場成長の主な促進要因と抑制要因、および主要企業のプロファイルなどをまとめています。

第1章 エグゼクティブサマリー

第2章 複合材料

  • 航空宇宙・防衛産業のFRP予測
  • 航空宇宙・防衛産業のCMC予測
  • CFRP用途:航空機の概要
  • CFRP用途:ヘリコプターの概要
  • ジェットエンジンにおける複合材料の役割
  • 次世代航空機におけるCFRP用途

第3章 高分子基複合材料 (PMC)

  • 繊維強化ポリマー (FRP) のイントロダクション
  • FRP構造の概要
  • CFRP企業・サプライチェーン
  • FRP製造の各段階におけるイノベーション
  • 民間航空宇宙部門におけるFRPのタイムライン、ほか

第4章 セラミック基複合材料 (CMC)

  • セラミック繊維のイントロダクション
  • 連続SiC繊維の製造
  • 連続アルミナ繊維の製造
  • セラミック繊維モノフィラメントのイントロダクション
  • CMC:主要企業、ほか

第5章 金属基複合材料 (MMC)

  • MMCのイントロダクション
  • 金属基添加材の分類・関係性
  • 添加材の比較:タイプ別
  • 主な添加材イノベーションの概要
  • 継続的なセラミック繊維MMC:アプリケーション別、ほか

第6章 軽量金属

  • アルミニウム合金
  • チタン合金
  • マグネシウム合金

第7章 高分子エアロゲル

  • エアロゲルとは?
  • エアロゲルタイプの分類・腱形成
  • 高分子エアロゲルのイントロダクション
  • 高分子エアロゲル:Aerogel Technologies
  • 高分子エアロゲル:BASF and Blueshift International Materials、ほか

第8章 カーボンナノチューブヤーン

  • カーボンナノチューブ (CNT) のイントロダクション
  • CNTヤーンのイントロダクション
  • CNTヤーンの構造・ベンチマーキング:主要企業、ほか

第9章 積層造形

  • 積層造形を採用する理由は?
  • 主な材料加工の関係
  • コンピューター支援エンジニアリング (CAE) :トポロジー
  • 成長の促進要因と抑制要因
  • 積層造形加工の各タイプ

第10章 ポリマーの積層造形における進歩

  • 粉末床溶融結合:選択的レーザー焼結法 (SLS)
  • 押出し成形:熱可塑性物質 (TPE)
  • 液槽光重合:光造形法 (SLA)
  • 液槽光重合:デジタルライトプロセッシング (DLP)
  • マテリアルジェッティング、ほか

第11章 金属の積層造形における進歩

  • 粉末床溶融結合:直接金属レーザー焼結法(DMLS)
  • 粉末床溶融結合:電子ビーム積層 (EBM)
  • 指向性エネルギー堆積:火薬式
  • 指向性エネルギー堆積:溶接
  • バインダージェッティング:金属バインダージェッティング、ほか

第12章 積層造形戦略・ケーススタディ

  • GE
  • Airbus
  • Boeing
  • GE Aviation: LEAP fuel nozzles
  • Boeing 787 Dreamliner: Ti-6Al-4V structures
  • Boeing: metal microlattice
  • Autodesk and Airbus: optimised partition wall
  • Airbus: bracket
  • RUAG Space and Altair: antenna mount
  • Hofmann: oxygen supply tube

第13章 航空宇宙AM市場の予測

  • プリンターユニットの供給予測:インストールベース・年間販売台数
  • マテリアル需要の予測:質量別

第14章 企業プロファイル

目次

The aerospace and defense sector is key to assess when it comes to the adoption of any emerging technology. The main players have specific material requirements and big budgets to address their needs. Analysing this sector gives vital insights into longer term trends, in many cases a trickle-down effect of these technologies will be seen into higher-volume and lower budget transportation industries over time.

One of the key demands is lightweighting. Aerospace has the highest carbon footprint per tonne-km over any other mode of transportation and regulatory demands and economic advantages mean that saving any weight is a constant target. Despite the increase regulatory pressure, the aerospace industry remains very healthy with a CAGR of 6.2% for aircraft deliveries from Boeing and Airbus since 2010 and significant number of backorders in place.

This report looks at the key lightweighting approaches for this sector and which players and technologies stand to be the main winners and losers, the predominant focus is on advanced lightweight materials and the rise of additive manufacturing. The material outlook is for all aerospace and defense applications, aircraft have the highest demand by volume and the applications investigated ranges to structural load-bearing roles, interiors, jet engines, and more.

This research was conducted through extensive research from IDTechEx. Granular 10-year market forecasts are provided for each section, and interview-based company profiles of innovative emerging companies addressing this sector are provided alongside this report.

Additive Manufacturing

Technology, Markets and Applications

In 2018, the 3D printing market comprises multiple different printer technologies. This report takes an in-depth look into established printer types compatible with polymer, metal and ceramic materials, including Vat Photopolymerisation (SLA/DLP/CLIP), Powder Bed Fusion (SLS/DMLS/EBM); Material Extrusion, Material Jetting, Binder Jetting and Directed Energy Deposition. Key technological capabilities, aerospace and defense manufacturing readiness levels, SWOT analyses and key manufacturers are discussed for each established printer type. In addition, compatible established material classes including Photosensitive Resins, Thermoplastic Powders, Thermoplastic Filaments, Metal Powders are presented and evaluated.

This report forecasts the key additive manufacturing technologies used by the aerospace and defense sector, with in depth discussion of currently commercialised and emerging printer technologies. The current state of the printer market is analysed, and long-range forecasts from 2018-2023 for accumulated and annual sales of printer technologies and materials including metal powders are evaluated.

Key AM questions that are answered in this report

  • What are the current and emerging printer technology types utilised in aerospace and defense?
  • What are the strengths and weaknesses of different additive manufacturing technologies?
  • Which printers support different material classes?
  • What are the additive manufacturing strategies of some of the market leaders?
  • What applications has additive manufacturing been employed in?
  • What are the key drivers and restraints of market growth?

Lightweight Materials

There are many types of materials that go into the composition of components in the aerospace and defense sector. This report tackles the key lightweight materials, of which the main candidates are outlined below.

image1

This report targets those most relevant to the aerospace and defense sector including: composites (FRP, CMC, MMC), lightweight metals (Al, Ti, Mg), and other emerging materials (specifically polymer aerogels and CNT yarns).

For each material the reader will find:

  • Market forecasts
  • Critical technology assessment
  • Analysis of main players and supply chain
  • Profiles of emerging players
  • Initial and long-term applications

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY

  • 1.1. Market drivers for lightweighting in the aerospace sector
  • 1.2. Overview of the aerospace market
  • 1.3. Material winners and losers in the aerospace and defense sector
  • 1.4. Composite market forecast for aerospace and defense sector
  • 1.5. Timeline for FRPs in the civil aerospace sector
  • 1.6. lightweight metals market forecast for the aerospace and defense sector
  • 1.7. Status of early stage lightweight materials and initial applications
  • 1.8. Why adopt additive manufacturing?
  • 1.9. Drivers and restraints of additive manufacturing
  • 1.10. OEM AM strategy - GE
  • 1.11. OEM AM strategy - Airbus
  • 1.12. OEM AM strategy - Boeing
  • 1.13. Additive manufacturing material market forecast for the aerospace and defense sector

2. COMPOSITES

  • 2.1. FRP forecast for aerospace and defense sector
  • 2.2. CMC forecast for aerospace and defense sector
  • 2.3. CFRP applications - aircraft overview
  • 2.4. CFRP applications - helicopter overview
  • 2.5. Role of composites in jet engines
  • 2.6. CFRP applications in next generation aircraft

3. POLYMER MATRIX COMPOSITES

  • 3.1. Introduction to fiber reinforced polymers (FRPs)
  • 3.2. Overview of FRP composition
  • 3.3. CFRP players and supply chain
  • 3.4. Innovations at each step of FRP manufacturing
  • 3.5. Timeline for FRPs in the civil aerospace sector
  • 3.6. CFRTP - a growing role in the aerospace sector
  • 3.7. Phenolic resins and alternatives in aerospace interiors
  • 3.8. Braided composites - applications and players
  • 3.9. Prepreg material - next generation products
  • 3.10. Spread tow fabrics for thin ply structures - overview
  • 3.11. Spread tow fabrics for thin ply structures - aerospace applications
  • 3.12. Natural fiber composites for aerospace interiors
  • 3.13. S-Glass fibers
  • 3.14. Boron fibers
  • 3.15. Recycling composites - overview
  • 3.16. Use of recycled composites in aerospace
  • 3.17. Advancements in robotic automation for composites
  • 3.18. Advancements in robotic automation for composites (2)
  • 3.19. Robotic automation for thermoplastic composites
  • 3.20. 3D Printing of polymer composites - status and players
  • 3.21. 3D Printing of polymer composites - aerospace applications
  • 3.22. Role of nanocarbon as additives to FRPs
  • 3.23. Routes to incorporating nanocarbon material into composites
  • 3.24. Metallized fiber for composites
  • 3.25. Multifunctional polymer composites - overview
  • 3.26. Key drivers for thermal and electrical property enhancements
  • 3.27. Embedded sensors for structural health monitoring of composites - introduction
  • 3.28. Embedded sensors for structural health monitoring of composites - types
  • 3.29. Fiber optic sensors (FOS) for composite SHM
  • 3.30. Embedded sensors for structural health monitoring of composites - methods
  • 3.31. Embedded energy storage for multifunctional composites
  • 3.32. Data transmission within composite parts
  • 3.33. Routes to "self-healing" composite parts

4. CERAMIC MATRIX COMPOSITES

  • 4.1. Introduction to ceramic fibers
  • 4.2. Manufacturing continuous SiC fibers
  • 4.3. Manufacturing continuous alumina fibers
  • 4.4. Introduction to ceramic fiber monofilaments
  • 4.5. CMC - main players
  • 4.6. SiC/SiC CMC applications - aerospace and defense
  • 4.7. Ox/Ox CMC applications - aerospace and defense

5. METAL MATRIX COMPOSITES

  • 5.1. Introduction to MMCs
  • 5.2. Classification and relationship of metal matrix additives
  • 5.3. Comparison of additives by type
  • 5.4. Overview of key additive innovations
  • 5.5. Continuous ceramic fiber MMC - applications
  • 5.6. Chopped ceramic fibers MMC - applications
  • 5.7. Ceramic particle MMC - applications
  • 5.8. Aluminium MMC Forecast by additive type and form
  • 5.9. Aluminium MMC Forecast by application

6. LIGHTWEIGHT METALS

  • 6.1. Aluminium Alloys
    • 6.1.1. Aluminium introduction and properties
    • 6.1.2. Overview of Aluminium-Lithium alloys
    • 6.1.3. Li-Al forecast for aerospace and defense sector
    • 6.1.4. Overview of Aluminium-Beryllium alloys
    • 6.1.5. Market forecast for Be-Al alloys
    • 6.1.6. Overview of aluminium-scandium alloys
    • 6.1.7. Production outlook for scandium oxide forecast
    • 6.1.8. Emerging role of Scalmalloy
  • 6.2. Titanium Alloys
    • 6.2.1. Titanium - overview and key properties
    • 6.2.2. Titanium players for the aerospace and defense sector
    • 6.2.3. Relationships between titanium players and aerospace OEMs
    • 6.2.4. Titanium alloys forecast for aerospace and defense sector
    • 6.2.5. Advancements in Titanium Alloys
    • 6.2.6. Overview and outlook for titanium aluminide (TiAl)
    • 6.2.7. Advancements in titanium processing
    • 6.2.8. Application of titanium alloys in aerospace and defense
  • 6.3. Magnesium Alloys
    • 6.3.1. Introduction to magnesium and alloys
    • 6.3.2. Advantages and disadvantages of magnesium
    • 6.3.3. Main players in magnesium supply chain
    • 6.3.4. Advancements in metal manufacturing
    • 6.3.5. Main aerospace applications
    • 6.3.6. Emerging application for aerospace interiors
    • 6.3.7. Magnesium alloys forecast for aerospace and defense sector

7. POLYMER AEROGELS

  • 7.1. What is an Aerogel?
  • 7.2. Classification and relationship of aerogel types
  • 7.3. Introduction to polymer aerogels
  • 7.4. Polymer aerogels - Aerogel Technologies
  • 7.5. Polymer aerogels - BASF and Blueshift International Materials
  • 7.6. Polymer aerogels for aerospace interiors
  • 7.7. Polymer aerogels for aerospace antennas
  • 7.8. Research into polymer aerogels - NASA

8. CARBON NANOTUBE YARNS

  • 8.1. Introduction to carbon nanotubes (CNT)
  • 8.2. Introduction to CNT yarns
  • 8.3. Formation and benchmarking of CNT yarns - main players
  • 8.4. Post yarn modification and challenges
  • 8.5. Role of CNT aspect ratio
  • 8.6. CNT yarns - specific conductivity
  • 8.7. CNT yarns - Ampacity
  • 8.8. CNT yarns - temperature coefficient of resistance
  • 8.9. CNT yarn aerospace and defense applications
  • 8.10. Emerging CNT yarn applications

9. ADDITIVE MANUFACTURING

  • 9.1. Why adopt additive manufacturing?
  • 9.2. Major material-process relationships
  • 9.3. Computer Aided Engineering (CAE): Topology
  • 9.4. Drivers and restraints of growth
  • 9.5. The different types of additive manufacturing processes

10. ADVANCES IN ADDITIVE MANUFACTURING OF POLYMERS

  • 10.1. Powder bed fusion: Selective Laser Sintering (SLS)
  • 10.2. Extrusion: Thermoplastics (TPE)
  • 10.3. Vat photopolymerisation: Stereolithography (SLA)
  • 10.4. Vat photopolymerisation: Direct Light Processing (DLP)
  • 10.5. Material jetting
  • 10.6. Binder jetting: polymer binder jetting
  • 10.7. Photosensitive resins
  • 10.8. Thermoplastic powders
  • 10.9. Thermoplastic filaments
  • 10.10. High temperature thermoplastic filaments and pellets
  • 10.11. Composite thermoplastic filaments

11. ADVANCES IN ADDITIVE MANUFACTURING OF METALS

  • 11.1. Powder bed fusion: Direct Metal Laser Sintering (DMLS)
  • 11.2. Powder bed fusion: Electron Beam Melting (EBM)
  • 11.3. Directed energy deposition: Blown Powder
  • 11.4. Directed energy deposition: Welding
  • 11.5. Binder jetting: Metal Binder Jetting
  • 11.6. Extrusion: Metal + polymer filament (MPFE)
  • 11.7. Vat photopolymerisation: Direct Light Processing (DLP)
  • 11.8. Material jetting: nanoparticle jetting (NJP)
  • 11.9. Material jetting: magnetohydrodynamic deposition
  • 11.10. Material jetting: microfluidic electroplating
  • 11.11. Powder morphology requirements
  • 11.12. Water or gas atomisation
  • 11.13. Plasma atomisation
  • 11.14. Powder morphology depends on atomisation process
  • 11.15. Supported materials
  • 11.16. Suppliers of metal powders for AM
  • 11.17. Alloys and material properties
  • 11.18. Aluminium and alloys
  • 11.19. 15-5PH stainless steel
  • 11.20. Nickel superalloy: Inconel 718
  • 11.21. Titanium and alloys
  • 11.22. Metal powder bed fusion post processing
  • 11.23. AM of High Entropy Alloys

12. ADDITIVE MANUFACTURING STRATEGIES AND CASE STUDIES

  • 12.1. GE
  • 12.2. Airbus
  • 12.3. Boeing
  • 12.4. GE Aviation: LEAP fuel nozzles
  • 12.5. Boeing 787 Dreamliner: Ti-6Al-4V structures
  • 12.6. Boeing: metal microlattice
  • 12.7. Autodesk and Airbus: optimised partition wall
  • 12.8. Airbus: bracket
  • 12.9. RUAG Space and Altair: antenna mount
  • 12.10. Hofmann: oxygen supply tube

13. AEROSPACE AM MARKET FORECAST

  • 13.1. Printer units supply forecast: installed base and annual sales
  • 13.2. Material demand forecast by mass

14. COMPANY PROFILES

  • 14.1. 3D Systems
  • 14.2. Acellent Technologies
  • 14.3. Aerogel Technologies
  • 14.4. Airborne
  • 14.5. Alvant
  • 14.6. Advanced Powders and Coatings (AP&C)
  • 14.7. Arcam AB
  • 14.8. Argen Corp
  • 14.9. Blueshift International Materials
  • 14.10. Boeing
  • 14.11. Carpenter
  • 14.12. Cevotec
  • 14.13. Composite Horizons
  • 14.14. Concept Laser
  • 14.15. DexMat
  • 14.16. EOS
  • 14.17. FRA Composites
  • 14.18. Free Form Fibers
  • 14.19. Gamma Alloys
  • 14.20. Hoganas
  • 14.21. Inca-Fiber
  • 14.22. Lockheed Martin
  • 14.23. LPW Technology
  • 14.24. Markforged
  • 14.25. Materialise
  • 14.26. Materion
  • 14.27. Metalysis
  • 14.28. Nanosteel
  • 14.29. Norsk Titanium
  • 14.30. North Thin Ply Technology (NTPT)
  • 14.31. Optomec
  • 14.32. Oxeon
  • 14.33. QUESTEK
  • 14.34. Realizer
  • 14.35. Sandvik
  • 14.36. Stratasys
  • 14.37. SLM Solutions
  • 14.38. Specialty Materials
  • 14.39. TISICS
  • 14.40. TWI
Back to Top