株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

ファイバーレーザー:技術・機会・市場・予測 (2018 - 2028年)

Fiber Lasers 2018-2028: Technologies, Opportunities, Markets & Forecasts

発行 IDTechEx Ltd. 商品コード 651688
出版日 ページ情報 英文 269 Slides
納期: 即日から翌営業日
価格
Back to Top
ファイバーレーザー:技術・機会・市場・予測 (2018 - 2028年) Fiber Lasers 2018-2028: Technologies, Opportunities, Markets & Forecasts
出版日: 2018年07月31日 ページ情報: 英文 269 Slides
概要

当レポートでは、近年のファイバーレーザー技術の発展が主要な市場セグメントへ及ぼす影響について調査し、ファイバーレーザー溶接 (自動車・航空宇宙・バッテリー) 、ファイバーレーザー金属蒸着 (3Dプリント) 、ファイバーレーザーに基づいた自動車LiDARシステム、高価値ファイバーレーザーセンシング、バイオメディカルイメージング・医療外科向けツールとしてのファイバーレーザーといった各主要技術の分析を提供しており、市場構造、材料加工、および価格・生産の10ヵ年予測、主要企業のプロファイルなどをまとめています。

第1章 エグゼクティブサマリー

第2章 ファイバーレーザーの動作原理

  • レーザーとLEDの比較
  • レーザー動作原理の概要
  • レーザーの種類:ダイオード、ファイバー、ソリッドステート、ディスク、およびガス
  • 光ファイバーの特徴
  • ファイバーレーザーの光学キャビティ
  • ファイバーレーザー光増幅・波長域
  • システム例:エルビウム添加ファイバーレーザー
  • ダイオードレーザーポンプスタッキング
  • レーザービームの特徴:主要パラメーター
  • パルスレーザーシステムにおけるパルス持続時間の影響、ほか

第3章 市場構造

  • 対象市場
  • ファイバーレーザーのバリューチェーン:主要企業
  • 主なファイバーレーザーサプライヤー
  • 材料加工の主なエンドユーザー産業
  • 主要企業の新製品:パートI
  • 主要企業の新製品:パートII
  • ファイバーレーザーの機会
  • ファイバーレーザーの課題

第4章 アプリケーション・ケーススタディ:材料加工におけるイノベーション

  • レーザー溶接:自動車産業
  • レーザー溶接:航空宇宙産業
  • 金属の3Dプリント

第5章 新興アプリケーション・ケーススタディ:センシング

  • 自動運転車両向けLiDAR:自動車産業
  • 高価値センシングアプリケーション

第6章 新興アプリケーション・ケーススタディ:医療

  • バイオメディカルイメージング & 診断:多光子顕微鏡
  • 医療・外科手術

第7章 市場予測

  • 主要企業の市場分析
  • 市場規模・成長率

第8章 付録

第9章 企業プロファイル

  • Convergent
  • Cybel, LLC
  • Lumibird (previously Keopsys Quantel)
  • MWTechnologies, LDA
  • Novae
  • NP Photonics
  • SPI Lasers Limited
  • IPG Photonics
  • Maxphotonics
  • Shenzhen JPT
  • TRUMPF
  • Wuhan Raycus
目次

Title:
Fiber Lasers 2018-2028: Technologies, Opportunities, Markets & Forecasts
Innovations in material processing; emerging applications in sensing & healthcare.

The global market for fiber lasers will be $8.9 billion by 2028.

Following a period of dedicated research by expert analysts, IDTechEx have published a report that provides a unique insight into the global fiber laser market. This report is ideal for existing or prospective laser suppliers, system integrators and end-users who are interested in the fiber laser market dynamics and related technology innovations. Importantly, the report offers an unbiased analysis of primary data gathered via our interviews with key players, and this builds on our expertise in laser end-user technologies such as electric vehicles and sensors.

Fiber lasers are compact and energy efficient laser systems that offer the best beam quality for applications where precision is important. As the technology is based on an optical fiber, the absence of free-space optics and mechanical components provides excellent system stability and long product lifetime. Directing the laser radiation to the point of application via an optical fiber ensures safe operation for humans and simplicity of integration into robotics. Hence, in a diverse range of industries, replacing conventional laser or non-laser technologies with fiber lasers can maximize process speed and precision while minimizing operation costs. Some examples of end-user industries that can benefit from the adoption of fiber laser technologies are highlighted below.

Inside a fiber laser, rare-earth metal dopants function as the gain medium and determine the output wavelength. 1-micron, 1.5-micron and 2-micron are the common infra-red (IR) wavelength bands optimized for applications in material processing, sensing and healthcare. Mid-IR supercontinuum (broadband) laser sources and visible light frequency-multiplied laser sources are also available for specialist applications in sensing and healthcare, respectively. Fiber lasers can easily achieve multi-kilowatt average output powers or function as ultrafast pulsed energy sources depending on the system architecture. The chart below illustrates the addressable market for fiber lasers.

Material Processing: Sustained Progress and Innovation

Fiber lasers have a large share in the laser material processing market. However, ongoing technology innovations led by key suppliers such as IPG Photonics (USA) enable fiber lasers to further replace competing laser and non-laser technologies. Based on extensive discussions with industry experts, IDTechEx have concluded that recent advances in fiber laser welding and 3D printing are highly important to lightweighting in automotive and aerospace manufacturing.

Sensing: Revolutionary Developments

Commercial applications of fiber lasers in sensing are typically limited to high-precision LiDAR for terrestrial mapping, range finding and wind sensing. IDTechEx have identified significant evidence of key players preparing to enter the automotive market by optimizing fiber laser LiDAR for autonomous vehicles. IDTechEx also expect emerging fiber laser technologies to have a significant impact on gas sensing and structural health monitoring within the next decade.

Healthcare: Towards Commercialization

Fiber lasers can offer wavelengths that are an excellent match to novel fluorescent markers and biological molecules. Key players collaborate with research institutes to optimize fiber laser systems for applications in biomedical imaging and medical surgery. IDTechEx have identified several emerging technologies that are expected to enter the healthcare market segment within the next decade.

Report Structure

In this report, Dr Nilushi Wijeyasinghe explores how recent fiber laser technology developments affect the growth of key market segments. She draws on her research experience in laser physics and materials physics in the discussion of novel technical concepts. Meanwhile, the advantages and challenges associated with technology trends are assessed to provide a balanced outlook on market opportunities, and recent progress is highlighted using case studies. Market forecasts are based on the extensive analysis of primary and secondary data, combined with careful consideration of market drivers, restraints and key player activities.

Technology topics covered in depth by this report:

  • Fiber laser welding: automotive, aerospace, battery
  • Fiber laser metal deposition (3D printing)
  • Automotive LiDAR systems based on fiber lasers
  • High-value fiber laser sensing
  • Fiber lasers as a tool for biomedical imaging and medical surgery

Market analysis provided by this report:

  • Market structure and growth: 10-year forecasts by application segment and geography
  • Material processing market growth: 10-year forecast by segment division
  • Price and production: 10-year forecasts
  • Key players: historical trends and company profiles
  • Fiber laser technology roadmap for 2018-2028

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY

  • 1.1. Fiber Laser Light Amplification & Wavelength Bands
  • 1.2. Addressable Market
  • 1.3. Fiber Laser Supply Chain: Key Players
  • 1.4. Fiber Laser Welding: SWOT Analysis
  • 1.5. Fiber Laser 3D Printing of Metals: SWOT Analysis
  • 1.6. Fiber Laser Automotive LiDAR: Industry Perspectives
  • 1.7. Fiber Laser Automotive LiDAR: SWOT Analysis
  • 1.8. Fiber Lasers for Medical Applications: SWOT Analysis
  • 1.9. LiDAR & Medical Technology Adoption Roadmap
  • 1.10. Global Fiber Laser Market Forecast
  • 1.11. Global LiDAR & Medical Fiber Laser Market Forecast
  • 1.12. Global Material Processing Market Forecast
  • 1.13. Market Forecast by Geography
  • 1.14. Fiber Laser Unit Price Forecast

2. OPERATING PRINCIPLES OF FIBER LASERS

  • 2.1. Comparison of Lasers & LEDs
  • 2.2. Overview of Laser Operating Principles
  • 2.3. Laser Types: Diode, Fiber, Solid-State, Disk & Gas
  • 2.4. Properties of Optical Fibers
  • 2.5. Fiber Laser Optical Cavity
  • 2.6. Fiber Laser Light Amplification & Wavelength Bands
  • 2.7. Example System: Erbium-Doped Fiber Laser
  • 2.8. Diode Laser Pump Stacking
  • 2.9. Laser Beam Characteristics: Key Parameters
  • 2.10. Effects of Pulse Duration in Pulsed Laser Systems
  • 2.11. Master Oscillator Fiber Amplifier Concept
  • 2.12. High-Precision Optics for Laser Systems
  • 2.13. Optical Components: Transmission Spectrum
  • 2.14. Optical Components: Laser Damage Limitation

3. MARKET STRUCTURE

  • 3.1. Addressable Market
  • 3.2. Fiber Laser Supply Chain: Key Players
  • 3.3. Key Fiber Laser Suppliers
  • 3.4. Key End User Industries for Material Processing
  • 3.5. New Products from Key Players
  • 3.6. Opportunities for Fiber Lasers
  • 3.7. Challenges for Fiber Lasers
  • 3.8. Evolution of CW Laser Power: Commercial Products
  • 3.9. Evolution of Pulsed Laser Power: Commercial and R&D

4. APPLICATIONS & CASE STUDIES: INNOVATIONS IN MATERIAL PROCESSING

  • 4.1. Laser Welding: Automotive Industry
    • 4.1.1. Laser Welding: Alternative to Resistance Spot Welding
    • 4.1.2. Fiber Laser Welding: SWOT Analysis
    • 4.1.3. Laser Welding of Lightweight Metal Structures
    • 4.1.4. Trifocal Beam Process for Vehicle Body Welding
    • 4.1.5. Wobble Beam Process for Battery Welding
    • 4.1.6. IPG Photonics: Wobble Beam Welding Patent
    • 4.1.7. Brazing Process to Minimize Aluminium Cracking
    • 4.1.8. Challenges in Laser Welding of Composites
    • 4.1.9. Transmission Laser Welding of Plastics & Composites
    • 4.1.10. Wobble Beam Welding of Plastics
    • 4.1.11. Vacuum Laser Welding of High-Value Components
    • 4.1.12. Automation: Welding Depth Control
    • 4.1.13. Automation: Laser Welding Industry 4.0
    • 4.1.14. Automation: Robotic Fiber Laser Welding
    • 4.1.15. Health Risks of Laser Generated Fumes
  • 4.2. Laser Welding: Aerospace Industry
    • 4.2.1. Laser Welding of Engine Components
    • 4.2.2. Laser Welding of Rocket Engine Nozzle
    • 4.2.3. Development of Fiber Laser Welding Capabilities
    • 4.2.4. Laser Welding of Titanium Matrix Composite Structures
  • 4.3. 3D Printing of Metals
    • 4.3.1. Fiber Laser 3D Printing of Metals: SWOT Analysis
    • 4.3.2. Cost Reduction in Selective Laser Melting
    • 4.3.3. Selective Laser Melting for Micromachining Applications
    • 4.3.4. Ultrafast Pulsed 3D Printing Process
    • 4.3.5. Wire-Fed Laser Metal Deposition

5. EMERGING APPLICATIONS & CASE STUDIES: SENSING

  • 5.1. LiDAR for Autonomous Vehicles: Automotive Industry
    • 5.1.1. LiDAR Technologies & Applications
    • 5.1.2. Solid-State LiDAR Technology Trend
    • 5.1.3. Operating Principles of Automotive LiDAR
    • 5.1.4. LiDAR Light Source: 905 nm Diode or 1550 nm Fiber
    • 5.1.5. Alternatives to LiDAR Systems
    • 5.1.6. Fiber Laser Automotive LiDAR: SWOT Analysis
    • 5.1.7. Fiber Laser Automotive LiDAR: Industry Perspectives
    • 5.1.8. Luminar: 1550 nm LiDAR Product
    • 5.1.9. Luminar: Automotive LiDAR Patent
    • 5.1.10. Luminar: Fiber Laser Light Source Patent
    • 5.1.11. Luminar: 1550 nm Automotive LiDAR Demonstration
    • 5.1.12. Toyota: Autonomous Vehicle with 1550 nm LiDAR
    • 5.1.13. Google: Fiber Laser LiDAR Development
    • 5.1.14. Google & Waymo: Automotive LiDAR Patent
    • 5.1.15. O-Net: Fiber Laser LiDAR Investment in China
    • 5.1.16. O-Net: Fiber Laser Product Launch
    • 5.1.17. Lumibird: High-Performance 3D Scanning
    • 5.1.18. Lumibird: Growth of LiDAR Business Division
  • 5.2. High-Value Sensing Applications
    • 5.2.1. Mid-IR Supercontinuum Fiber Lasers
    • 5.2.2. Remote Multi-Species Gas Sensing
    • 5.2.3. Disaster Management: LiDAR Vibration Measurement
    • 5.2.4. Structural Health Monitoring of Vehicles & Infrastructure
    • 5.2.5. Oil & Gas: Hydrocarbon Exploration & Production
    • 5.2.6. Wind Sensing: LiDAR for Wind Turbines & Aerospace

6. EMERGING APPLICATIONS & CASE STUDIES: HEALTHCARE

  • 6.1. Biomedical Imaging & Diagnostics: Multiphoton Microscopy
    • 6.1.1. Multiphoton Medical Imaging
    • 6.1.2. Mouse Hippocampus Imaging Tests
    • 6.1.3. Retinal Disease Diagnostics
    • 6.1.4. Cost-Effective Laser for Two Photon Microscopy
    • 6.1.5. Development of New Lasers for Three Photon Microscopy
  • 6.2. Medical Treatment & Surgery
    • 6.2.1. Fiber Lasers for Medical Applications: SWOT Analysis
    • 6.2.2. Photocoagulation Eye Surgery for Diabetic Damage
    • 6.2.3. Vision Correction
    • 6.2.4. Endoscopic Surgery: Laser Ablation of Soft Tissue
    • 6.2.5. Kidney Stone Ablation
    • 6.2.6. Skin Rejuvenation
    • 6.2.7. Dentistry: Dental Implant Production & Gum Regeneration

7. MARKET FORECASTS

  • 7.1. Market Analysis of Key Players
    • 7.1.1. IPG Photonics: Fiber Laser Revenue Growth
    • 7.1.2. IPG Photonics: High-Power & Low-Power Fiber Lasers
    • 7.1.3. IPG Photonics: Revenue Growth by Fiber Laser Application
    • 7.1.4. IPG Photonics: Material Processing
    • 7.1.5. IPG Photonics: Medical & LiDAR
    • 7.1.6. IPG Photonics: Growth by Geography
    • 7.1.7. IPG Photonics: Chinese Laser Market Growth
    • 7.1.8. SPI Lasers: Revenue Growth
    • 7.1.9. SPI Lasers: Growth by Geography
    • 7.1.10. Maxphotonics: Revenue Growth
    • 7.1.11. Trumpf: Revenue Growth
    • 7.1.12. Coherent & Rofin: Revenue Growth
  • 7.2. Market Size & Growth 2018-2028
    • 7.2.1. Fiber Lasers Market Size & Key Players
    • 7.2.2. Forecast Methodology: Data Collection
    • 7.2.3. Forecast Methodology: Laser Market Considerations
    • 7.2.4. Forecast Methodology: Key Player Considerations
    • 7.2.5. Materials Processing: Prospects & Market Drivers
    • 7.2.6. LiDAR & Sensing: Prospects & Market Drivers
    • 7.2.7. Medical: Prospects & Market Drivers
    • 7.2.8. LiDAR & Medical Technology Adoption Roadmap
    • 7.2.9. Global Fiber Laser Market Forecast
    • 7.2.10. Growth of Fiber Laser Market Segments
    • 7.2.11. Global LiDAR & Medical Fiber Laser Market Forecast
    • 7.2.12. Global Material Processing Market Forecast
    • 7.2.13. Growth of Material Processing Market Segments
    • 7.2.14. Market Forecast by Geography
    • 7.2.15. Growth of Regional Fiber Laser Market Segments
    • 7.2.16. Fiber Laser Unit Price 2017
    • 7.2.17. Global Production Volume Forecast
    • 7.2.18. Fiber Laser Unit Price Forecast

8. APPENDIX

  • 8.1. Appendix 1: IPG Photonics Financial Data
  • 8.2. Appendix 2: IPG Photonics Financial Data
  • 8.3. Appendix 3: SPI Lasers Financial Data
  • 8.4. Appendix 4: Maxphotonics & Trumpf Financial Data
  • 8.5. Appendix 5: Coherent & Rofin Financial Data
  • 8.6. Appendix 6: Fiber Lasers Market Size & Key Players
  • 8.7. Appendix 7: Global Fiber Laser Market Forecast
  • 8.8. Appendix 8: Global Fiber Laser Market Forecast
  • 8.9. Appendix 9: Global Fiber Laser Market Forecast

9. COMPANY PROFILES

  • 9.1. Amplitude Systemes
  • 9.2. Coherent
  • 9.3. Connet Laser Technology
  • 9.4. Convergent
  • 9.5. Cybel, LLC
  • 9.6. FANUC Corporation
  • 9.7. Fujikura Ltd
  • 9.8. Furukawa Electric Group
  • 9.9. IPG Photonics
  • 9.10. Lumentum Operations LLC
  • 9.11. Lumibird (previously Keopsys Quantel)
  • 9.12. Maxphotonics
  • 9.13. MWTechnologies, LDA
  • 9.14. Newport Corporation
  • 9.15. NKT Photonics
  • 9.16. nLight Corporation
  • 9.17. Novae
  • 9.18. NP Photonics
  • 9.19. Shenzhen JPT
  • 9.20. SPI Lasers Limited
  • 9.21. TRUMPF
  • 9.22. Wuhan Raycus
Back to Top