株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

分散型発電:ミニグリッド・マイクログリッド・ゼロ排出電力 2018年~2038年 - 予測・技術・ロードマップ・市場におけるギャップ

Distributed Generation: Minigrid Microgrid Zero Emission 2018-2038 - Forecasts, Technology Roadmap, Gaps in Market

発行 IDTechEx Ltd. 商品コード 578153
出版日 ページ情報 英文 390 Slides
納期: 即日から翌営業日
価格
分散型発電:ミニグリッド・マイクログリッド・ゼロ排出電力 2018年~2038年 - 予測・技術・ロードマップ・市場におけるギャップ Distributed Generation: Minigrid Microgrid Zero Emission 2018-2038 - Forecasts, Technology Roadmap, Gaps in Market
出版日: 2019年03月31日 ページ情報: 英文 390 Slides
概要

当レポートでは、世界のオフグリッドゼロ排出電力の市場を調査し、市場および技術の概要、市場成長への影響因子および課題の分析、システムエレメント、主要地域における取り組み、主な発電技術とその動向、今後の技術的発展のロードマップ、主要企業・組織による取り組みの例などをまとめています

第1章 エグゼクティブサマリー・総論

  • オフグリッドゼロ排出電力供給とは
  • ゼロ排出オフグリッドのシステムアーキテクチャ
  • マルチモードハーベスティングによるミニグリッド
  • 電力自給型船舶の市場機会
  • オングリッド vs オフグリッド:国別
  • 概要:オフグリッドの構造・経緯
  • オフグリッドの主要技術
  • アドレサブル市場
  • 技術ロードマップ、など

第2章 イントロダクション

  • システムエレメント
  • 基礎設定
  • エネルギーハーベスティング (EH)
  • 市場におけるギャップ
  • 電気力学
  • 地熱
  • 100kW超の波力の磁気歪
  • 電池とは、など

第3章 世界における進歩・市場機会の例

  • 概要
  • ファイナンス&コーディネーション
  • アフリカの動向
  • 米領サモア
  • アンティグア
  • オーストラリア
  • バングラデシュ
  • カンボジア
  • 中国
  • コンゴ民主共和国
  • ドバイ
  • インド
  • 再生可能電力
  • 日本
  • ケニヤ
  • ラオス
  • マリ
  • マルタ
  • モロッコ
  • ニュージーランド
  • ナイジェリア
  • プエルトリコ
  • シエラレオネ
  • タンザニア
  • 米国、など

第4章 オフグリッドエネルギーハーベスティング技術の比較

  • 概要
  • 重要パラメーター
  • EH技術の望まれる機能の比較
  • EH技術の相対的メリットとニーズ
  • EH技術のハイプ曲線

第5章 光・赤外線からの電力

  • 概要
  • 例:ミニグリッドとしてのボート
  • シリコン以外の主なPVの選択肢
  • pn接合 vs 光電気化学効果DSSC
  • G24i屋内モジュール vs aSiモジュールの電力密度の比較
  • DSSCアドレサブルニッチ市場
  • BIPV
  • 発電する道路:PV・圧電、など

第6章 風力発電

  • 概要
  • ニッチの100kW未満の風力タービン
  • 風力による電気の自給:Inergy 70kW
  • Energy Observer:風力と太陽光
  • 空中浮体式風力エネルギー
  • 電気力学:テザードドローンのポンピングアクション
  • 主な空中浮体式風力エネルギーの選択肢
  • 例:AWEの市場機会
  • AWEのニーズ、など

第7章 ブルーエネルギー発電

  • 概要
  • WITT:6D波力発電
  • 沖縄科学技術大学「Sea Horse」

第8章 電池

  • 電気化学の定義
  • トリレンマ
  • 定置型ストレージの重要性の拡大
  • 定置型ストレージの新たな道のり
  • オフグリッド蓄電技術
  • 蓄電技術の比較
  • アンシラリーサービスにおける電池貯蔵の価値
  • コスト:主な障壁
  • バリューチェーン
  • 産業間の電池コラボレーションの例
  • Tesla Energy
  • Powerwall
  • BYD
  • シャープ
  • ソニー
  • 東芝
  • Mercedes-Benz・Daimler
  • レドックスフロー電池 (RFB)、など

第9章 その他のオフグリッド蓄電

目次

Grid electricity is being bypassed. Extension of national grids is nowhere near keeping up with population growth. The sheer cost of upgrading national grids and their vulnerability to terrorism and natural disasters is leading to clean off grid power. It will also replace 800 GW of diesel gensets.

The new 370+ page IDTechEx report, "Off Grid Distributed Generation: Minigrid and Microgrid 2018-2038" reveals the market drivers and changing technologies involved. Primarily it concerns the rapid expansion of clean distributed energy as microgrids and minigrids of 0.5kW- 1MW. The Executive Summary and Conclusions includes detailed forecasts and technology roadmaps. The Introduction explains off grid history, definitions, comparison of the ten energy harvesting technologies, the fringe topic geothermal and the nature and challenges of off grid batteries plus electricity cost comparisons. A chapter on progress and opportunities worldwide: profiles continents and 21 countries. Chapter 4 compares technologies in more detail than earlier. The emphasis is on what is new and important for the future: this is seen in the drill down chapter on electricity from light and infrared scoping such things as perovskites, Building Integrated Photovoltaics BIPV, solar vs piezo roads and "Silent City" leading to the chapter on electricity from wind including a close look at the newly commercial Aerial Wind Energy AWE and such things as piezo + photovoltaic sails as multi-mode harvesting becomes important. Off grid electricity from water is then explained with a detailed look at off grid battery technologies at the end of the report.

The presentation is compact with new detailed infograms and forecasts and a creative, critical approach by the many PhD level analysts who have toured the world to gain the information using local languages for technical interviews. It is shown that the biggest markets are on the mainland initially mainly in developing countries but mini grids are popular in island states, both developed and developing. There are more than 10,000 inhabited islands around the world and an estimated 750 million islanders and the report profiles many doing off grid, giving gives statistics, trends and achievements. In most cases, renewables are already a cost-effective replacement for their diesel generators and others benefit from solar panels taking much of their load as is also scoped in Africa and elsewhere.

The report even shows that vehicles and charging stations where needed will become micro and mini grids increasingly not connected to national grids. For example, Tesla promises solar bodywork and Elon Musk says he will take all his intended 10 GW of charging stations worldwide off grid. There is a clear roadmap in the report showing 2.2 million larger vehicles becoming candidates for energy independence as clean off grid minigrids in 2028 including the largest ships having zero emission instead of each emitting NOx and particulates of millions of cars. Off grid is shown to be a prudent diversification for utilities and fossil fuel companies now investing in it. The potential is considerable and for the first time it has now been fully scoped by this report, from single solar panels on huts in Africa to the 17 types of land vehicle, boat, ship and plane from 2014-2028 that will trend to being travelling minigrids with zero emission.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. What is an off grid zero emission electricity supply?
  • 1.2. Zero emission off grid system architecture
  • 1.3. Minigrids with multi-mode harvesting
  • 1.4. Purpose and context of this report
  • 1.5. Much is changing
  • 1.5.1. Stealing the emperor's clothes: Market drivers for off grid are strengthening
  • 1.6. Zero emission electricity generation market by source $bn <100MW groups 2028 and 2038
  • 1.7. Market driven approach: uninterrupted transportable green electricity
  • 1.8. Energy independent ship opportunity: 3MW gap in the market
  • 1.9. The ultimate all-weather mobile genset: no emissions, little energy storage?
  • 1.10. Definitions
    • 1.10.1. Overview
  • 1.11. On-grid vs off grid by country
  • 1.12. More reasons to worry about national grids now
    • 1.12.1. Five factors
    • 1.12.2. Why even electricity utilities back off grid
  • 1.13. Overview of off grid structure and history
    • 1.13.1. Structure
    • 1.13.2. History
    • 1.13.3. Electricity supply in 2018 and 2050: here comes off grid
    • 1.13.4. Access to electricity by people in 2018: conflicting forces
    • 1.13.5. Bridging technologies: solar assisted diesel gensets
  • 1.14. Which renewables, mainly zero emission, take over grid and off grid generation
  • 1.15. Off-grid leading technologies: PV with Li-ion batteries winning
  • 1.16. Addressable markets
    • 1.16.1. Introduction
    • 1.16.2. Reliable electricity in Africa
    • 1.16.3. Population by per capita income
    • 1.16.4. Off grid renewable energy installed capacity in 2050
    • 1.16.5. Installed capacity 2018-2050 kTWh/yr by grid, fringe of grid, off grid stationary, vehicle
    • 1.16.6. Installed capacity 2018kTWh/yr by grid, fringe of grid, off grid stationary, vehicle
    • 1.16.7. Installed capacity 2028 kTWh/yr by grid, fringe of grid, off grid stationary, vehicle
    • 1.16.8. Installed capacity 2040 kTWh/yr by grid, fringe of grid, off grid stationary, vehicle
    • 1.16.9. Installed capacity 2050 kTWh/yr by grid, fringe of grid, off grid stationary, vehicle
    • 1.16.10. Situation where grid access is lacking or poor
    • 1.16.11. Average annual lighting spend by off-grid population $/year 2012
    • 1.16.12. Africa
    • 1.16.13. Sales of large hybrid and pure electric vehicles globally in 17 categories number k 2013-2028
    • 1.16.14. Off-grid solar forecast
    • 1.16.15. Pico solar as indicator of microsolar
  • 1.17. Technology roadmaps
    • 1.17.1. Overview
    • 1.17.2. Off grid technology and adoption roadmap: harvesting
    • 1.17.3. Off grid technology and adoption roadmap: storage
  • 1.18. Continuity as important as cost: energy storage vs energy harvesting for continuity
    • 1.18.1. Overview
    • 1.18.2. Adoption, transition, optimisation
    • 1.18.3. Options for tapping excellent 200+m wind: particularly strong at night when PV is off
  • 1.19. Solar power for sustainable development

2. INTRODUCTION

  • 2.1. Electrification alone will save 42% of world power demand
  • 2.2. System elements
    • 2.2.1. Where the term zero emission off-grid is used
    • 2.2.2. Off-grid structural types
  • 2.3. Basic configuration
  • 2.4. Energy harvesting (EH)
    • 2.4.1. Definition and overview
    • 2.4.2. Market drivers for off grid energy harvesting
    • 2.4.3. Features of energy harvesting
    • 2.4.4. EH transducer construction, materials
    • 2.4.5. Energy harvesting transducer options compared for all applications
    • 2.4.6. Off-Grid Energy Harvesting technology intermittent power generated
    • 2.4.7. Efficiency
    • 2.4.8. Energy harvesting is an immature industry
    • 2.4.9. IFEVS Italy energy independent electric restaurant van
  • 2.5. Gaps in the market : replace 6-800GWh of diesel gensets
  • 2.6. Electrodynamics
    • 2.6.1. Overview
    • 2.6.2. Electrodynamic parameters
  • 2.7. Geothermal
  • 2.8. Magnetostriction for 100kW+ wave power
  • 2.9. What is a battery?
    • 2.9.1. Basics
    • 2.9.2. Ecosystem for the whole battery life
    • 2.9.3. Ongoing lithium-ion fires and explosions - computers, cars, aircraft
    • 2.9.4. Hoverboards
    • 2.9.5. Next Li-ion failures and production delays due to cutting corners
  • 2.10. E.ON electricity utility promotes off-grid
  • 2.11. Standards and certification
  • 2.12. ABB microgrids
  • 2.13. China leads in photovoltaics
  • 2.14. Renault Group's smart island
  • 2.15. Australia can and should go off grid?
    • 2.15.1. IRENA view
    • 2.15.2. IRENA background data
  • 2.16. Local experience
  • 2.17. International Energy Agency (IEA) view
  • 2.18. Palau to host world's largest microgrid

3. PROGRESS AND OPPORTUNITIES WORLDWIDE: EXAMPLES

  • 3.1. Overview
  • 3.2. Finance and coordination
  • 3.3. Trend in Africa
  • 3.4. American Samoa
  • 3.5. Antigua
  • 3.6. Australia
    • 3.6.1. Schneider gets greenlight for energy project in South Australia
    • 3.6.2. Tesla off grid houses 30% cheaper than grid
  • 3.7. Bangladesh
  • 3.8. Cambodia
  • 3.9. China
  • 3.10. Democratic Republic of Congo
  • 3.11. Dubai
  • 3.12. India
  • 3.13. Renewable electricity: more attention now
  • 3.14. Japan
  • 3.15. Kenya
  • 3.16. Laos
  • 3.17. Mali
  • 3.18. Malta
  • 3.19. Morocco
  • 3.20. New Zealand
  • 3.21. Nigeria
  • 3.22. Puerto Rico
    • 3.22.1. sonnen brings power to Puerto Rico
  • 3.23. Sierra Leone
  • 3.24. Tanzania
  • 3.25. USA
    • 3.25.1. Microgrids boost edge of grid and provide backup

4. OFF-GRID ENERGY HARVESTING TECHNOLOGIES COMPARED

  • 4.1. Overview
  • 4.2. Important parameters
  • 4.3. Comparison of desirable features of EH technologies
  • 4.4. Relative benefits of EH technologies vs needs
  • 4.5. Hype curve for EH technologies
  • 4.6. Thermoelectric microgrids: when?

5. ELECTRICITY FROM LIGHT AND INFRARED

  • 5.1. Overview
  • 5.2. Thermoelectric Microgrids: When?
  • 5.3. Example: boat as a minigrid
  • 5.4. Main PV options beyond silicon
  • 5.5. Best research-cell efficiencies
  • 5.6. Photovoltaics becomes cheaper than large onshore wind in 2020
  • 5.7. Photovoltaics experience curve 2018
  • 5.8. pn junction vs photoelectrochemical DSSC
  • 5.9. Comparison G24i Indoor Module vs aSi Module Power Density
  • 5.10. DSSC addressable niche markets
  • 5.11. Solar greenhouses generate electricity and grow crops
  • 5.12. University of Colorado Boulder 2018
  • 5.13. Building integrated photovoltaic thermal (BIPVT)
  • 5.14. Electricity generating roads, paths: Piezo, electrodynamic or heat?
  • 5.15. Electricity from heat of roads, parking lots etc
  • 5.16. Silent city
  • 5.17. Building integrated photovoltaics BIPV
  • 5.18. Increasing silicon photovoltaic efficiency

6. ELECTRICITY FROM WIND

  • 6.1. Small wind turbines
  • 6.2. Electricity from wind
  • 6.3. Below 100kW wind turbines get niche
  • 6.4. Off grid electricity from wind
  • 6.5. Ground turbine wind power does not downsize well: physics and poorer wind
  • 6.6. Turbine choices
  • 6.7. Vertical Axis Wind Turbines VAWT have a place
  • 6.8. Electrical autonomy using wind alone: Inerjy 70kW energy independent boat being built with H-VAWT
  • 6.9. Energy Observer microgrid - VAWT wind and sun
  • 6.10. Airborne Wind Energy
  • 6.11. Electrodynamics: pumping action of tethered drone
  • 6.12. Main Airborne Wind Energy options taken seriously
  • 6.13. Example: opportunities for AWE
  • 6.14. Two very different needs for AWE
  • 6.15. Bladetips Energy
  • 6.16. Ampyx Power
  • 6.17. TwingTec
  • 6.18. Primary conclusions: the MW grid opportunity most are chasing
  • 6.19. Primary conclusions: the opportunity beyond MW grid
  • 6.20. Primary conclusions: AWE technologies
  • 6.21. Hybrid piezo photovoltaic film and fiber for sails etc
  • 6.22. More efficient small wind turbines

7. ELECTRICITY FROM WATER "BLUE ENERGY"

  • 7.1. Focus of this chapter
  • 7.2. Sources and technologies of inland water power
    • 7.2.1. Inland water power: sources, location potential
    • 7.2.2. Overall small hydro potential for steady supply with little or no storage
  • 7.3. Sources and technologies of marine (ocean) power
    • 7.3.1. Marine power: sources, location potential
    • 7.3.2. Where ocean power is both strongest and close to population
    • 7.3.3. Location of strongest ocean power for replacing diesel gensets
  • 7.4. Zero emission technology evolution: water power in context
    • 7.4.1. Overview
    • 7.4.2. Brief summary of water power technologies using water movement
    • 7.4.3. Technology options wave and tide stream: popularity by projects examined
    • 7.4.4. Ocean conversion technology winners and losers
  • 7.5. Optimal power ranges for hydro and marine mini/ microgrid power sources
  • 7.6. Small inland hydro <10MW SOFT report
  • 7.7. Wave power <10MW SOFT report
  • 7.8. Tidal power <10MW SOFT report
  • 7.9. Three strategies for new water power: very different LCOE targets needed
  • 7.10. Inland hydro the only past water success, wave takes big orders, tidal stream later
  • 7.11. Global primary energy consumption TWh
  • 7.12. Expect many new applications: Example - Sea Bubble water taxi charging
  • 7.13. Hype curve for water power

8. BATTERIES

  • 8.1. Electrochemistry definitions
  • 8.2. Useful charts for performance comparison
  • 8.3. The battery trilemma
  • 8.4. Stationary energy storage is not new
  • 8.5. The increasingly important role of stationary storage
  • 8.6. New avenues for stationary storage
  • 8.7. Off grid energy storage technologies
  • 8.8. Energy storage technologies in comparison
  • 8.9. Values provided by battery storage in ancillary services
  • 8.10. Costs: a major impediment
  • 8.11. Value Chain
  • 8.12. The launch of Tesla Energy and corresponding sales
  • 8.13. Powerwall's specifications
  • 8.14. Powerwall - a breakthrough product?
  • 8.15. Analysis of Tesla's strategy
  • 8.16. Background of Tesla's Gigafactory
  • 8.17. The impact of Tesla's Gigafactory
  • 8.18. The story did not start with Tesla and will not end with Tesla
  • 8.19. BYD
  • 8.20. BYD's layout is similar to Tesla and it makes wind turbines too
  • 8.21. Mercedes-Benz Energy Storage and Daimler's 2nd-use stationary battery storage project
  • 8.22. Redox Flow Batteries (RFB)
  • 8.23. The case for RFBs
  • 8.24. The price of RFBs
  • 8.25. The price of RFBs - LCOS
  • 8.26. Redox flow batteries in the news
  • 8.27. Redox flow batteries and caves
  • 8.28. Guide to understanding the charts
  • 8.29. Largest operational RFB projects
  • 8.30. Market players (operational projects)
  • 8.31. Hype curve for RFB technologies
  • 8.32. Other RFB configurations

9. OTHER OFF GRID ENERGY STORAGE

  • 9.1. Gravity storage cheaper, safer, cleaner, longer lived than batteries?
  • 9.2. Borkum Municipality with a flagship project for energy storage - news in 2019
  • 9.3. Other off grid energy storage