株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

電気活性スマートガラス・スマートウィンドウ:2018 - 2028年

Electrically Active Smart Glass and Windows 2018-2028

発行 IDTechEx Ltd. 商品コード 499450
出版日 ページ情報 英文 213 Slides
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=111.71円で換算しております。
Back to Top
電気活性スマートガラス・スマートウィンドウ:2018 - 2028年 Electrically Active Smart Glass and Windows 2018-2028
出版日: 2017年08月09日 ページ情報: 英文 213 Slides
概要

当レポートでは、電気活性スマートガラス・スマートウィンドウ市場について調査し、世界市場規模の予測、産業セグメント別の市場予測、主な市場分類、促進因子、および技術・マテリアルの動向などについてまとめています。

第1章 エグゼクティブサマリー・結論

第2章 イントロダクション

  • 新たな市場の生成
  • スマートガラスのニーズを促進する動向
  • 自動車・輸送向けガラス技術
  • 電気活性ガラスの利用

第3章 技術

  • 透明材料を電気活性化する方法
  • スマートガラス技術、マテリアル、およびメーカーを支える現象のサマリー
  • 基本構成
  • アクティブガラスの機能の選択
  • 量子ドット (QD) 技術

第4章 透明・半透明太陽光発電・熱発電

  • 概要
  • 透明有機太陽光発電 (OPV)
  • 透明発光型集光器 (TLSC)
  • 導光太陽光集光器
  • 熱電発電ウィンドウ

第5章 電気的スマートガラスを用いたシェーディング技術

  • 概要
  • 特徴
  • 発色・光散乱現象

第6章 エレクトロクロミック技術 (EC)

  • 概要
  • アクティブエレクトロクロミックマテリアル
  • エレクトロクロミックデバイスの変数の設計
  • エレクトロクロミックウィンドウの製造工程
  • ECガラスにおける透明導電フィルムのオプション
  • エレクトロクロミクスはフレキシブルに向かう
  • EC製造能力:地域別
  • サプライヤー
  • 共通のアプリケーション機能
  • エレクトロクロミックガラスの設置
  • 価格動向
  • 第1世代のアクティブエレクトロクロミクス
  • 第2世代のエレクトロクロミクス
  • 第3世代のエレクトロクロミックデバイス:Heliotrope のエレクトロクロミクス

第7章 電圧応答性または静電指向性マテリアル

  • 電圧応答性または静電指向性マテリアル
  • 液晶スマートガラスの構造
  • 懸濁粒子デバイス
  • 液晶技術の第3世代
  • LC切替可能フィルムの各世代
  • 液晶機能・アプリケーション:EMDの視点
  • Licrivisionの色素ドープ液晶
  • 活動中のLC
  • LC技術の
  • ScienstryのLC技術
  • ウィンドウの改良が可能に:Argo

第8章 アクティブシェーディング向け懸濁粒子技術

  • アクティブシェーディング向け懸濁粒子技術
  • 車両におけるSPT
  • Research Frontiers Inc

第9章 OLED透明照明とディスプレイ

  • 透明OLED照明
  • 車両における透明OLED
  • 最新の市場発表
  • 技術進歩
  • OLED市場の普及
  • OLED照明のバリューチェーン
  • OLED市場予測

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

"Electrically active transparent smart glass will be a $6.5 billion market in 2028, growing rapidly."

The new 200 page IDTechEx report, “Electrically Active Smart Glass and Windows 2018-2028” observes that electrically active see-through glass is an idea whose time has come. The main characteristics of active smart glass are that it involves an electrical interface and is controlled manually by the user or automatically with a sensor, remote control device or integrated building control system. It is commercialized in various ways, particularly in architectural, automotive, aerospace and marine applications. The report is intended for investors, vehicle and building designers and purchasers, developers, manufacturers and other interested parties. It was researched globally by PhD level multilingual analysts, it will also assist those intending to manufacture, sell or use such materials and units and the devices such as windows and systems incorporating them.

“Electrically Active Smart Glass and Windows 2018-2028” explains why greatest adoption today is for controlled shading and these versions are mainly electrochromic but the largest sector in 2028 will be electricity generating windows. Active smart glass powers the megatrend of structural electronics replacing tired old components-in-a-box designs. It replaces drapes and ugly solar panels that are an afterthought. It saves space, weight and cost while improving reliability, ruggedness and life of electrics, electronics and active optics. It makes buildings far more efficient and pleasant to use. Such smart glass will even facilitate the megatrend to energy independent vehicles by creating electricity from the ever larger windows of land, water and air vehicles by providing privacy, energy conservation, elimination of pollution and sun protection on demand.

The Executive Summary and Conclusions is sufficient in itself for those in a hurry to grasp where the market and technology is headed, why and who is involved. It is followed by an Introduction covering the needs of the primary users - the building and vehicle industries - and progress in achieving these. The specific uses and trends by region across the world are covered. For example, electrically active windows started with embedded demister, de-icer and antenna patterns and progressed to the darken-on-demand windows popular in airliners, superyachts, premium cars and many buildings. Next, electricity creating photovoltaic windows are increasingly seen in buildings and keenly awaited for mainstream vehicles.

Chapter 3 drills down into the technologies by format and chemistry and Chapter 4 further explores the important aspect of translucent and transparent photovoltaics and thermoelectrics. Among the topics explained here with many illustrations are Building Integrated Photovoltaics BIPV, Organic Photovoltaics OPV, Transparent Luminescent Solar Concentrators TLSC and light guiding solar concentrators all for windows.

Chapters 5 and 6 cover what is currently the largest market: shading technologies using electrically smart glass with subsections on the different technology options including pros and cons and latest advances. Chapter 7 covers Voltage Responsive or Electrostatic Oriented Materials in detail and Chapter 8 gives the detail on Suspended Particle Technology SPT for active shading. Chapter 9 explains OLED transparent lighting and displays - glamorous but unsuccessful as yet: we explain why. Throughout, a host of examples of commercial products and new research breakthroughs are illustrated.

The new IDTechEx report, "Electrically Active Smart Glass and Windows 2018-2028" primarily concerns the commercialisation and future of electrically active inorganic glass we call smart glass. That includes putting it in context with passive glass optically responding to heat and light and transparent electrically active polymers in windows and combinations as well.

With many original infographics, tables and images, IDTechEx presents both the technology and the markets in an easily absorbed manner. It uses facts-based analysis to create roadmaps, forecasts and insights. The primary coverage is transparent photovoltaics producing electricity; electronic shades using electrically activated liquid crystals, suspended particle devices and electrochromics and thirdly structural OLED lighting. However, many other options are also covered such as the thermoelectric creation of electricity to power sensors in translucent glass. Passive darkening technology is compared with active.

Building skins with tunable properties have been the architects' dream for decades. Such skins will alter the very concept of a building into that of an entity operating in harmony with nature rather as, in most cases, in stark opposition to nature and requiring energy guzzling measures. The report gives ten year forecasts for the various technologies comprising a market of around $6.5 billion in 2028 and a lot more thereafter. It explains why this is mainly concerned with new buildings and new vehicles, with some opportunity for premium pricing, and different potential for different functions.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Purpose of this report Smart glass
  • 1.2. Choices of capability of active glass
  • 1.3. Electrically active smart glass $ billion global market 2018/2028
    • 1.3.1. Overview 2018 and 2028
    • 1.3.2. Main market categories, drivers and technologies
    • 1.3.3. Primary needs addressed, main technology, success, potential, issues
    • 1.3.4. Past forecasts by others have tended to be over-optimistic
    • 1.3.5. Past forecasts: electrically screening smart glass
    • 1.3.6. PV, BIPV, transparent BIPV, vehicle glass PV 2017-2028 $billion global Here we present the latest IDTechEx forecasts including sector characteristics
    • 1.3.7. Electrically active shading $million global
    • 1.3.8. OLED lighting and % flexible 2017-2028 $billion global
  • 1.4. Progress
  • 1.5. Physical principles

2. INTRODUCTION

  • 2.1. Creating new markets
  • 2.2. Trends driving need for smart glass
    • 2.2.1. View of global infrastructure developer ARUP
    • 2.2.2. What is the trend in the use of glass in the built environment?
    • 2.2.3. Vehicles land, water, air
    • 2.2.4. Vehicles travelling on sunshine alone will benefit from photovoltaic windows
    • 2.2.5. IFEVS solar-only microcars Italy: 40 km a day
    • 2.2.6. Combining photovoltaic with optically active windows
    • 2.2.7. Combining photovoltaic with optically active windows
    • 2.2.8. Cars will be substantially replaced by delivery trucks, autonomous taxis, buses.
    • 2.2.9. Peak in car sales k - goodbye to many things...
    • 2.2.10. China car market dominates
    • 2.2.11. Autonomous bus taxi: large smart windows needed
    • 2.2.12. Autonomy enabling the reverse commute
    • 2.2.13. Glass technology for automotive and transport
  • 2.3. Value-added features
  • 2.4. Uses for electrically active glass
    • 2.4.1. Flat glass markets: smart glass context
    • 2.4.2. Building glass market
    • 2.4.3. Samsung OLED window
    • 2.4.4. EC glass for aerospace: The More Electric Aircraft MEA
    • 2.4.5. EC glass for marine applications
  • 2.5. Electric darkening

3. TECHNOLOGIES

  • 3.1. Ways of making transparent materials TM electrically active
  • 3.2. Summary of phenomena behind smart glass technologies, materials and manufacturers
  • 3.3. Basic configurations
  • 3.4. Choices of capability of active glass
  • 3.5. Quantum dot QD technology
    • 3.5.1. Quantum dot PV is still in early stage
    • 3.5.2. Comparison of efficiencies
    • 3.5.3. Quantum dot PV: SWOT analysis
    • 3.5.4. Latest review on quantum dot PV technologies
    • 3.5.5. Slow progress in the industry
    • 3.5.6. Solterra
    • 3.5.7. Magnolia Solar Corporation
    • 3.5.8. Kolon Industries
    • 3.5.9. Karlsruhe Institute of Technology Germany
    • 3.5.10. QD solar concentrator (UbiQD - Los Alamos)
    • 3.5.11. Advantages of QD solar concentrators
    • 3.5.12. QD Solar announcement in 2017
  • 3.6. Thin transparent film could improve electronics and solar cells

4. TRANSPARENT AND TRANSLUCENT PHOTOVOLTAICS AND THERMOELECTRICS

  • 4.1. Overview
    • 4.1.1. Many competing technologies in PV
    • 4.1.2. OPV has issues of cost and lowest efficiency
    • 4.1.3. PV windows for buildings
    • 4.1.4. Smartflex solar facades
    • 4.1.5. POLYMODEL micro EV Italy
    • 4.1.6. Example: Pythagoras Solar
  • 4.2. Transparent organic photovoltaics OPV
    • 4.2.1. Polysolar
    • 4.2.2. SolarWindow Technologies
    • 4.2.3. Swiss Federal Institute for Materials Science and Technology
  • 4.3. Transparent Luminescent Solar ConcentratorsTLSC
    • 4.3.1. Michigan State University
    • 4.3.2. Example highway barriers: Eindhoven TU
    • 4.3.3. Universities of Minnesota and Milano Bicocca advance in 2017
    • 4.3.4. Quantum dot TLSC: Los Alamos
    • 4.3.5. Taiyo Kogyo
  • 4.4. Light-guiding solar concentrators
    • 4.4.1. ITRI Taiwan
    • 4.4.2. Morgan Solar Canada
  • 4.5. Thermoelectric harvesting windows: Strep Solearth

5. SHADING TECHNOLOGIES USING ELECTRICALLY SMART GLASS

  • 5.1. Overview
  • 5.2. Characteristics
  • 5.3. Chromogenic and Light Scattering Phenomena

6. ELECTROCHROMIC TECHNOLOGY (EC)

  • 6.1. Overview
  • 6.2. Active electrochromic materials
  • 6.3. Design variables of electrochromic devices
    • 6.3.1. Factors affecting operation
    • 6.3.2. Energy Efficiency Potential
  • 6.4. Electrochromic window manufacturing process
  • 6.5. Options for transparent conducting films in EC Glass
    • 6.5.1. Metal nanowires
    • 6.5.2. % Transmittance Challenge
  • 6.6. Electrochromics going flexible
    • 6.6.1. Why consider this opportunity?
  • 6.7. EC production capacity by region
  • 6.8. Suppliers
  • 6.9. Common applicational functions
  • 6.10. Electrochromic glass installations
  • 6.11. Price trend
  • 6.12. First generation active electrochromics
    • 6.12.1. Limitation
    • 6.12.2. Tungsten Oxides - SAGE and View Co.
  • 6.13. Second Generation Electrochromics
    • 6.13.1. Hydrides - View Co.
  • 6.14. Third generation electrochromic devices: Heliotrope Electrochromics

7. VOLTAGE RESPONSIVE OR ELECTROSTATIC ORIENTED MATERIALS

  • 7.1. Voltage Responsive or Electrostatic Oriented Materials
  • 7.2. Structure of liquid crystal smart glass
    • 7.2.1. Suspended Particle Devices
  • 7.3. Suspended Particle Devices
  • 7.4. Three generations of Liquid Crystal Technologies
  • 7.5. Different generations of LC switchable films
  • 7.6. Liquid crystal capability and applications: view of EMD
  • 7.7. Licrivision dye doped liquid crystals
  • 7.8. LC in action
  • 7.9. Scienstry LC technology
  • 7.10. Window retrofit becomes possible: Argo
  • 7.11. Next Generation EC Technology
  • 7.12. TCO and Barrier Films

8. SUSPENDED PARTICLE TECHNOLOGY FOR ACTIVE SHADING

  • 8.1. 8.1 SPT in vehicles
  • 8.2. 8.2 Research Frontiers Inc

9. OLED TRANSPARENT LIGHTING AND DISPLAYS

  • 9.1. Transparent OLED lighting
  • 9.2. Latest Market Announcements
  • 9.3. Latest Market Announcements
  • 9.4. Technology Progress
  • 9.5. OLED Market penetration
  • 9.6. OLED Lighting Value Chain
  • 9.7. OLED market forecast 2017-2027
Back to Top