無料レポート プレゼントキャンペーン 実施中 : メールサービスに新規登録いただいた方にご用意した無料レポートをご提供

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

環境ガスセンサー:2018-2028年

Environmental Gas Sensors 2018-2028

発行 IDTechEx Ltd. 商品コード 387389
出版日 ページ情報 英文 164 Slides
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=113.03円で換算しております。
Back to Top
環境ガスセンサー:2018-2028年 Environmental Gas Sensors 2018-2028
出版日: 2018年05月11日 ページ情報: 英文 164 Slides
概要

世界の環境ガスセンサー市場は、2028年には31億米ドルに達する見込みです。

当レポートは、ガスセンサーのエコシステムを構成する広範な技術を取り上げ、6つの市場セグメント (モバイルデバイス、ウェアラブル、大気質 (IAQ) 、空気清浄機、自動車、スマートシティ) の分析と予測を提供しています。

第1章 エグゼクティブサマリー

第2章 イントロダクション

第3章 汚染センシング技術

  • 現在の汚染モニタリング装置は費用がかかる
  • ガスセンサーは代替を提供
  • センサー産業
  • 化学センサーの歴史
  • 検出可能な大気汚染物質の濃度、ほか

第4章 ガスセンサーの小型化

  • 小型センサー:市場における転換点
  • MEMSマニュファクチャリングを利用したセンサー製造
  • 扁平型電気化学センサー、ほか

第5章 環境センサー市場の競合分析

  • ガスセンサーのバリューチェーン
  • ガスセンサーメーカーのリスト
  • ガスセンサー産業における近年の買収、ほか

第6章 モバイルデバイスにおけるセンサー

  • モバイルデバイス産業
  • モバイルデバイスに適した検出原理
  • スマートフォンへのセンサー統合の課題
  • モバイルデバイス部門における将来の市場機会

第7章 ウェアラブルにおけるセンサー

  • ウェアラブル技術産業
  • リストウェアにおけるセンサー統合
  • ウェアラブルセンサーの技術要件
  • モジュラーリストストラップの一部としてのウェアラブルセンサー、ほか

第8章 室内空気質 (IAQ) 測定用センサー

  • 室内空気質 (IAQ)
  • 室内汚染物質のもと
  • 意思決定におけるCO2暴露の影響
  • ホーム・オフィスモニタリング:コネクテッド環境、ほか

第9章 空気清浄機におけるセンサー

  • 世界の空気清浄機市場
  • 空気清浄方法
  • 空気清浄機に適した微小検出原理
  • 室内空気質 (IAQ) における課題

第10章 自動車におけるセンサー

  • 自動車汚染:世界にまん延
  • 乗員を保護する大気質センサー
  • 自動車ガスセンシングの課題
  • 自動車ガスセンサーの将来の機会

第11章 スマートシティにおけるセンサー

  • スマートシティのイントロダクション
  • 固定 vs. モバイルセンシングネットワーク
  • 個人 vs. プライベートネットワーク
  • 現在の都市規模の汚染モニタリングプログラム
  • 現在のスマートシティ大気モニタリングプロジェクト、ほか

第12章 その他のアプリケーション

  • 端末型環境モニター
  • AirCasting (大気質モニタリングアプリ)

第13章 市場予測

  • 予測詳細・前提条件
  • 市場別の内訳
  • 市場予測:出荷高
  • 市場予測:収益
  • 出荷高予測:検出原理別
  • 収益予測:検出原理別
  • モバイルデバイスにおけるセンサー:数量別
  • モバイルデバイスにおけるセンサー:収益別
  • ウェアラブルにおけるセンサー:数量別
  • ウェアラブルにおけるセンサー:収益別
  • 大気質モニターにおけるセンサー:数量別
  • 大気質モニターにおけるセンサー:収益別
  • 空気清浄機におけるセンサー:数量別
  • 空気清浄機におけるセンサー:収益別
  • スマートシティセンサー:数量別
  • スマートシティセンサー:収益別
  • 自動車センサー:数量別
  • 自動車センサー:収益別
  • その他のアプリケーション:数量別
  • その他のアプリケーション:収益別
  • 結論

第14章 企業プロファイル

目次

The market for gas sensor will reach $3,100 million by 2028.

Poor air quality causes more deaths annually than HIV/AIDS and malaria combined. A lack of low cost environmental monitoring equipment prevents individuals from taking action to improve air quality. Currently environmental monitoring methods are expensive and provide low spatial coverage, making their usefulness to individuals limited.

Sensors are based on tried and tested technology, new methods of manufacture are enabling smaller, lower power and more selective sensors. This has led to a tipping point in the industry, enabling the integration of sensors into low cost devices and into everyday consumer electronics such as mobile phones and wearable devices. In the future, a range of detection principles will be used to assess the wide range of pollutants in the environment. By 2028, more than 700 million sensors will be used in mobile phones.

At the same time, sensors will play a key role in IoT development and will be used extensively in smart home and smart city programmes. Heating, ventilation and air conditioning (HVAC) systems, air purifiers, smart windows and other applications will employ sensors to improve the quality of life of individuals across the world. We expect a growing market for gas sensors used in smart homes and smart cities.

In this report, we forecast the market for environmental gas sensors from 2018 to 2028. The atmospheric pollutants under examination include CO2, volatile organic compounds, NOx, Ammonia, SO2 and CO. Many pollutants exist at similar concentrations in the region of parts per billion (ppb). Consequently, there is a greater need for selective sensors in environmental monitoring. Another main focus is the particle pollutant of micron size, as the concern of smog is growing.

This report covers biosensors based on techniques of:

  • Pellistor gas sensor
  • Infrared gas sensor
  • metal oxide semiconductor (MOS) gas sensor
  • electrochemical gas sensor
  • and optical particle monitor (OPM) gas sensor

These techniques were compared with the traditional methods such as ultraviolet adsorption or filter dynamics measurement system. Gas sensors present an opportunity to attain good spatial coverage on environmental information, unobtainable with traditional monitoring methods. Microelectromechanical systems and screen printing techniques open the door to miniaturising these sensors, which is the key for the future use of these gas sensors

The market forecast is based on six major market segments:

  • automotive
  • air purifier
  • smart devices (mobile)
  • smart home
  • smart city
  • and wearables.

The environmental sensor market is currently dominated by the automotive industry, where sensors are used to automate air flow into the drivers' compartment. Over the coming years, IDTechEx expect to see large increases in sales across several new markets, primarily to the mobile device and air purifier industries.

We provide a list of main manufacturers of gas sensors, and a SWOT analysis of ten. We also give a comprehensive study on current available devices that using gas sensor to monitor environment, including sensors in mobile devices, wearable, air purifiers, automobiles, smart cities and to measure indoor air quality.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY

  • 1.1. New technology is unlocking the market
  • 1.2. Major market segments
  • 1.3. Key players in each sensor type
  • 1.4. Trends by detection principles

2. INTRODUCTION

  • 2.1. The global challenge of air pollution
  • 2.2. Effects of outdoor air pollution
  • 2.3. Indoor air pollution is also an issue
  • 2.4. The seven most common atmospheric pollutants
  • 2.5. International air quality standards
  • 2.6. Need for environmental monitoring
  • 2.7. Types of environmental sampling
  • 2.8. Potential uses for low cost air quality monitors

3. TECHNOLOGIES FOR POLLUTION SENSING

  • 3.1. Current pollution monitoring instruments are costly
  • 3.2. Gas sensors offer an alternative
  • 3.3. Sensor industry
  • 3.4. History of chemical sensors
  • 3.5. Concentrations of detectable atmospheric pollutants
  • 3.6. Environmental sensing in industrial facilities
  • 3.7. Five common detection principles for gas sensors
  • 3.8. Introduction to pellistor gas sensors
  • 3.9. Introduction to infrared gas sensors
  • 3.10. Introduction to metal oxide (MOS) gas sensors
  • 3.11. Introduction to electrochemical gas sensors
  • 3.12. Introduction to optical particle detection
  • 3.13. Current research in gas sensors: carbon nanotubes
  • 3.14. Current research in gas sensors: zeolites
  • 3.15. Current research in gas sensors: graphene
  • 3.16. Transition to new manufacturing methods
  • 3.17. Energy harvesting technologies for gas sensors
  • 3.18. Sensors in comparison with traditional equipment
  • 3.19. Limitations of gas sensing devices

4. MINIATURIZATION OF GAS SENSORS

  • 4.1. Miniaturized sensors: a tipping point in the market
  • 4.2. Sensor fabrication using MEMS manufacturing
  • 4.3. Flat electrochemical sensors
  • 4.4. Comparison between classic and miniaturised sensors
  • 4.5. Miniaturisation of pellistor gas sensors
  • 4.6. Miniaturisation of infrared gas sensor
  • 4.7. Miniaturisation of electrochemical gas sensors
  • 4.8. Miniaturisation of MOS gas sensors
  • 4.9. Comparison of miniaturised sensor technology

5. COMPETITIVE ANALYSIS OF THE ENVIRONMENTAL SENSOR MARKET

  • 5.1. The gas sensor value chain
  • 5.2. List of gas sensor manufacturers
  • 5.3. Recent acquisitions in the gas sensor industry
  • 5.4. Sensor manufacturer business models
  • 5.5. Porters' five force analysis of industry
  • 5.6. Quality assurance for environmental monitoring equipment
  • 5.7. SWOT analysis of 10 manufacturers
  • 5.8. Future challenges for sensor manufacturers

6. SENSORS IN MOBILE DEVICES

  • 6.1. The mobile device industry
  • 6.2. Suitable detection principles for mobile devices
  • 6.3. Consumer interface for gas sensing data
  • 6.4. Challenges for sensor integration into smartphones
  • 6.5. Future market opportunities in the mobile device sector

7. SENSORS IN WEARABLES

  • 7.1. The wearable technology industry
  • 7.2. Sensor integration in wrist wear
  • 7.3. Technology requirements of wearable sensors
  • 7.4. Wearable sensors as part of modular wrist straps
  • 7.5. Environmental sensor integration in fashion accessories
  • 7.6. Future opportunities for wearable sensors

8. SENSORS TO MEASURE INDOOR AIR QUALITY

  • 8.1. Indoor air quality
  • 8.2. Sources of indoor air pollutants
  • 8.3. Effects of CO2 exposure on decision making
  • 8.4. Home and office monitoring: a connected environment
  • 8.5. Current smart home monitoring vendors
  • 8.6. Sensors to direct HVAC systems
  • 8.7. HVAC systems in buildings
  • 8.8. Future opportunities for IAQ monitoring
  • 8.9. Challenges for indoor air quality measurement

9. SENSORS IN AIR PURIFIERS

  • 9.1. The global air purifier market
  • 9.2. Methods of air purification
  • 9.3. Suitable miniaturised detection principles for air purifiers
  • 9.4. Challenges in indoor air quality monitoring

10. SENSORS IN AUTOMOBILES

  • 10.1. Automobile pollution: a global epidemic
  • 10.2. Air quality sensors safeguarding passengers
  • 10.3. Car mounted sensors monitoring air pollution in Mexico City
  • 10.4. Challenges for automobile gas sensing
  • 10.5. Future opportunities for automobile gas sensors

11. SENSORS IN SMART CITIES

  • 11.1. Introduction to smart cities
  • 11.2. Fixed vs mobile sensing networks
  • 11.3. Personal vs private networks
  • 11.4. Current city wide pollution monitoring programmes
  • 11.5. Current smart city air monitoring projects
  • 11.6. Calculated air quality measurements
  • 11.7. Transport based sensing of environmental pollutants
  • 11.8. Airborne pollution sensing
  • 11.9. Mobile monitoring: sensors on bicycles
  • 11.10. Traffic monitoring with gas sensors
  • 11.11. Array of things project - Chicago
  • 11.12. Anatomy of an outdoor sensor node
  • 11.13. Challenges for smart city monitoring
  • 11.14. Future opportunities for environmental sensors in smart cities

12. OTHER APPLICATIONS

  • 12.1. Handheld environmental monitors
  • 12.2. Aircasting

13. MARKET FORECASTS

  • 13.1. Forecast details and assumptions
  • 13.2. Breakdown by market
  • 13.3. Market forecast: unit sales
  • 13.4. Market forecast: market value
  • 13.5. Unit sales forecast by detection principle
  • 13.6. Market value forecast by detection principle
  • 13.7. Sensors in smart devices by volume
  • 13.8. Sensors in smart devices by revenue
  • 13.9. Sensors in wearables by volume
  • 13.10. Sensors in wearables by revenue
  • 13.11. Sensors in air purifier by volume
  • 13.12. Sensors in air purifier by revenue
  • 13.13. Sensors in smart city by volume
  • 13.14. Sensors in smart city by revenue
  • 13.15. Sensors in smart home by volume
  • 13.16. Sensors in smart home by revenue
  • 13.17. Sensors in automotive by volume
  • 13.18. Sensors in automotive by revenue
  • 13.19. Other applications by volume
  • 13.20. Other application by revenue
  • 13.21. Conclusions

14. COMPANY PROFILES

Back to Top