無料セミナー : 2019年11月8日『商用車・オフハイウェイ車の電動化トレンドと電池市場:市場現状と製品戦略』 Interact Analysis共同開催

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

固体電池およびポリマー電池 2019-2029年:技術・市場・予測

Solid-State and Polymer Batteries 2019-2029: Technology, Patents, Forecasts

発行 IDTechEx Ltd. 商品コード 382840
出版日 ページ情報 英文 455 Slides
納期: 即日から翌営業日
価格
Back to Top
固体電池およびポリマー電池 2019-2029年:技術・市場・予測 Solid-State and Polymer Batteries 2019-2029: Technology, Patents, Forecasts
出版日: 2019年05月30日 ページ情報: 英文 455 Slides
概要

当レポートでは、固体電解質産業について取り上げ、販売デバイス数、生産能力および市場規模の予測を提供しており、固体電解質の製造に関連した課題および大手企業によるこれらの課題への対応、主要企業20社の比較と技術・製造即応性に関するランキングなどをまとめています。

第1章 エグゼクティブサマリー

第2章 イントロダクション

  • なぜ固体電池なのか?
  • 固体電池における研究の取り組み
  • 業界の取り組み:BMW
  • 業界の取り組み:Volkswagen
  • 業界の取り組み:パナソニック
  • 業界の取り組み:Hyundai
  • 業界の取り組み:トヨタ
  • 業界の取り組み:Fisker Ink
  • OEMによる固体電池の協力/買収
  • 電池メーカーについてはどうか?: Samsung SDI
  • 電池メーカーについてはどうか?:CATL
  • 安全性
  • 性能
  • フォームファクター
  • コスト、ほか

第3章 リチウムイオン技術の概要

  • 食料は人間にとっての電気
  • リチウム電池 (LIB) とは?
  • LIBはどのように改善できるか?
  • アノード代替:リチウム金属
  • アノード代替:チタン酸リチウム
  • アノード代替:炭素同素体
  • アノード代替:シリコン・合金材料
  • カソード代替:LFP
  • カソード代替:LNMO
  • カソード代替:NMC
  • カソード代替:五酸化バナジウム
  • カソード代替:LCPO
  • カソード代替:硫黄
  • カソード代替:酸素
  • フッ素化電解質を必要とする高エネルギーカソード

第4章 固体電池

  • 固体電池 (SSB) とは何か?
  • SSBの歴史
  • 液体電解質と固体電解質の違い
  • 良い固体電解質を設計する方法
  • リチウムイオン電池 vs. 固体電池
  • 固体電解質のファミリーツリー:無機 vs. ポリマー
  • 薄膜 vs. バルク型固体電池
  • 薄型セラミックシートのスケーリング
  • 固体電池はどの程度安全か?
  • 固体電池の性能をどのように拡大できるか?
  • 学術的観点:University of Munster
  • 学術的観点:Giessen University
  • 学術的観点:Fraunhofer Batterien
  • SSBはどの程度フレキシブルおよびカスタマイズ可能か?
  • 電気自動車向けSSB
  • 家電向けSSB

第5章 固体無機電解質

  • リチウムイオン向け固体無機電解質のランキング
  • 無機電解質のタイプ
  • リチウム-ハロゲン化合物
  • ペロブスカイト
  • リチウム-水素化物
  • NASICON-like
  • Ohara Corp.
  • Schott
  • Garnet
  • Karlsruhe Institute of Technology
  • 名古屋大学
  • Argyrodite
  • LiPON
  • Ilika
  • LISICON-like
  • 日立造船
  • 固体電解質:甲南大学
  • 東京工業大学

第6章 固体ポリマー電解質

  • リチウムポリマー電池、ポリマー型電池、ポリマー電池
  • ポリマー電解質の種類
  • ポリマー電解質の作動原理
  • ポリマー電解質の最も一般的な種類
  • Bollore
  • Hydro-Quebec
  • Solvay
  • IMEC
  • Polyplus
  • ポリマー型電池の用途、ほか

第7章 無機 vs. ポリマー電解質

  • 無機 vs. ポリマー電解質の比較
  • ポリマー電解質のメリット・課題
  • 無機電解質のメリット・課題
  • デンドライト
  • 技術評価:ポリマー vs. LLZO vs. LATP vs. LGPS、ほか

第8章 複合電解質

第9章 リチウムイオンを上回る固体電解質

  • リチウム-硫黄電池における固体電解質
  • リチウム-空気電池における固体電解質
  • 金属-空気電池における固体電解質
  • ナトリウム-イオン電池における固体電解質
  • ナトリウム-硫黄電池における固体電解質

第10章 固体電池の製造

  • 実際の障害
  • 現行プロセス:ラミネーション
  • 薄膜電解質は実行可能か?
  • 現在の固体薄膜電池製品関連の課題
  • 製造のための手段
  • トヨタのアプローチ
  • 日立造船のアプローチ
  • Ilikaのアプローチ
  • Sakti3のアプローチ
  • Planar Energyのアプローチ

第11章 原材料:リチウムメタル

  • なぜリチウムがそんなに重要なのか?
  • リチウムはどこか?
  • リチウムの生産方法
  • リチウムはどこで使用されているか?
  • 質問:どれだけLiを必要としているか?

第12章 技術・市場即応性

  • 技術および製造即応性
  • 市場即応性
  • 電池の熱望
  • 性能比較:電気自動車
  • 性能比較:CE & ウェアラブル

第13章 市場予測

第14章 固体電解質関連の特許分析

第15章 非複合無機またはポリマーSSE

第16章 企業プロファイル

第17章 付録

目次

Title:
Solid-State and Polymer Batteries 2019-2029: Technology, Patents, Forecasts
Revolutionary approach for the battery business.

The potentials to reshuffle the battery supply chain have prompted a new wave of investment.

A typical commercial battery cell usually consists of cathode, anode, separator and electrolyte. One of the most successful commercial batteries is the lithium-ion technology, which has been commercialized since 1991. However, their worldwide success and diffusion in consumer electronics and, more recently, electric vehicles (EV) cannot hide their limitations in terms of safety, performance, form factor, and cost due to the underlying technology.

Most current lithium-ion technologies employ liquid electrolyte, with lithium salts such as LiPF6, LiBF4 or LiClO4 in an organic solvent. However, the solid electrolyte interface (SEI), which is caused as a result of the de-composition of the electrolyte at the negative electrode, limits the effective conductance. Furthermore, liquid electrolyte needs expensive membranes to separate the cathode and anode, as well as an impermeable casing to avoid leakage. Therefore, the size and design freedom for these batteries are constrained. Furthermore, liquid electrolytes have safety and health issues as they use flammable and corrosive liquids. Samsung's Firegate has particularly highlighted the risks that even large companies incur when flammable liquid electrolytes are used.

Solid-state electrolytes have the potential to address all of those aspects, particularly in the electric vehicle, wearable, and drone markets. Their first application was in the 70's as primary batteries for pacemakers, where a sheet of Li metal is placed in contact with solid iodine. The two materials behave like a short-circuited cell and their reaction leads to the formation of a lithium iodide (LiI) layer at their interface. After the LiI layer has formed, a very small, constant current can still flow from the lithium anode to the iodine cathode for several years. Fast forward to 2011, and researchers from Toyota and the Tokyo Institute of Technology have claimed the discovery of a sulphide-base material that has the same ionic conductivity of a liquid electrolyte, something unthinkable up to a decade ago. Five years later, they were able to double that value, thus making solid-state electrolytes appealing also for high power applications and fast charging. This and other innovations have fuelled research and investments into new categories of materials that can triple current Li-ion energy densities.

In solid-state batteries, both the electrodes and the electrolytes are solid state. Solid-state electrolyte normally behaves as the separator as well, allowing down-scaling due to the elimination of certain components (e.g. separator and casing). Therefore, they can potentially be made thinner, flexible, and contain more energy per unit weight than conventional Li-ion. In addition, the removal of liquid electrolytes can be an avenue for safer, long-lasting batteries as they are more resistant to changes in temperature and physical damages occurred during usage. Solid state batteries can handle more charge/discharge cycles before degradation, promising a longer life time.

With a battery market currently dominated by Asian companies, European and US firms are striving to win this arms race that might, in their view, shift added value away from Japan, China, and South Korea. Different material selection and change of manufacturing procedures show an indication of reshuffle of the battery supply chain. From both technology and business point of view, development of solid state battery has formed part of the next generation battery strategy. It has become a global game with regional interests and governmental supports.

This report covers the solid-state electrolyte industry by giving a 10-year forecast till 2029 in terms of numbers of devices sold, capacity production and market size, predicted to reach over $25B. A special focus is made on winning chemistries, with a full analysis of the 8 inorganic solid electrolytes and of organic polymer electrolytes. This is complemented with a unique IP landscape analysis that identifies what chemistry the main companies are working on, and how R&D in that space has evolved during the last 5 years.

Additionally, the report covers the manufacturing challenges related to solid electrolytes and how large companies (Toyota, Toshiba, etc.) try to address those limitations, as well as research progress and activities of important players. A study of lithium metal as a strategic resource is also presented, highlighting the strategic distribution of this material around the world and the role it will play in solid-state batteries. Some chemistries will be quite lithium-hungry and put a strain on mining companies worldwide.

Finally, over 20 different companies are compared and ranked in terms of their technology and manufacturing readiness, with a watch list and a score comparison.

Players talked in this report:

24M, Applied Materials, BatScap (Bolloré Group) / Bathium, Beijing Easpring Material Technology, BMW, BrighVolt, BYD, CATL, Cenat, CEA Tech, China Aviation Lithium Battery, Coslight, Cymbet, EMPA, Enovate Motors, FDK, Fisker Inc., Flashcharge Batteries, Fraunhofer Batterien, Front Edge Technology, Ganfeng Lithium, Giessen University, Guangzhou Great Power, Guoxuan High-Tech Power Energy, Hitachi Zosen, Hyundai, Ilika, IMEC, Infinite Power Solutions, Institute of Chemistry Chinese Academy of Sciences, Ionic Materials, ITEN, Jiawei Long powers Solid-State Storage Tecnology RuGao City Co.,Ltd, JiaWei Renewable Energy, Johnson Battery Technologies, Kalptree Energy, Magnis Energy Technologies, Mitsui Metal, Murata, National Battery, National Interstellar Solid State Lithium Electricity Technology, NGK/NTK, Ningbo Institute of Materials Technology & Engineering, CAS, Oak Ridge Energy Technologies, Ohara, Panasonic, Planar Energy, Polyplus, Prieto Battery, ProLogium, Qing Tao Energy Development Co., QuantumScape, Sakti 3, Samsung SDI, Schott AG, SEEO, Solidenergy, Solid Power, Solvay, Sony, STMicroelectronics, Taiyo Yuden, TDK, Tianqi Lithium, Toshiba, Toyota, ULVAC, University of Münster, Volkswagen, Wanxian A123 Systems, WeLion New Energy Technology, Zhongtian Technology

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Players talked about in this report
  • 1.2. Industry efforts on solid-state batteries
  • 1.3. Status and future of solid state battery business
  • 1.4. Regional efforts: Germany, France, UK, Australia, USA, Japan, Korea and China
  • 1.5. Comparison of various solid-state lithium-based batteries
  • 1.6. Solid-state electrolyte technology approach
  • 1.7. Comparison of solid state electrolytes
  • 1.8. Technology evaluation
  • 1.9. Technology evaluation: polymer vs. LLZO vs. LATP vs. LGPS
  • 1.10. Technology and manufacturing readiness 1
  • 1.11. Technology and manufacturing readiness 2
  • 1.12. Score comparison
  • 1.13. Solid state battery collaborations / acquisitions by OEMs
  • 1.14. Battery ambitions
  • 1.15. Solid-state battery value chain
  • 1.16. Potential applications for solid-state batteries
  • 1.17. Market readiness 1
  • 1.18. Market readiness 2
  • 1.19. Market readiness 3
  • 1.20. Solid-state batteries for electric vehicles
  • 1.21. Solid-state batteries for consumer electronics
  • 1.22. Solid-state battery sales by units
  • 1.23. Solid-state battery production by GWh
  • 1.24. Forecasts by chemistry 2019-2029
  • 1.25. Forecasts by application 2019-2029
  • 1.26. Performance comparison: Electric Vehicles
  • 1.27. Market penetration by 2029 - EVs
  • 1.28. Market penetration by 2029 - drones
  • 1.29. Solid-state battery market for EVs ($B)
  • 1.30. Solid-state battery market share for EVs in 2024 and 2029
  • 1.31. Solid-state battery sales by units (EV)
  • 1.32. Solid-state battery market for electric cars ($B)
  • 1.33. Solid-state battery market for electric trucks ($B)
  • 1.34. Solid-state battery market for electric buses ($M)
  • 1.35. Market growth for solid-state batteries in wearables and CEs ($M)
  • 1.36. Performance comparison: CEs & wearables
  • 1.37. Solid-state battery market for wearables and CEs
  • 1.38. Market penetration by 2029 - wearables and CEs

CHAPTER 1: BACKGROUND

2. Chapter 1: introduction

3. WHY IS BATTERY DEVELOPMENT SO SLOW?

  • 3.1. What is a battery?
  • 3.2. A big obstacle - energy density
  • 3.3. Battery technology is based on redox reactions
  • 3.4. Electrochemical reaction is essentially based on electron transfer
  • 3.5. Electrochemical inactive components reduce energy density
  • 3.6. The importance of an electrolyte in a battery
  • 3.7. Cathode & anode need to have structural order
  • 3.8. Failure story about metallic lithium anode

4. SAFETY ISSUES WITH LITHIUM-ION BATTERIES

  • 4.1. Safety of liquid-electrolyte lithium-ion batteries
  • 4.2. Modern horror films are finding their scares in dead phone batteries
  • 4.3. Samsung's firegate
  • 4.4. Safety aspects of Li-ion batteries
  • 4.5. LIB cell temperature and likely outcome

5. LI-ION BATTERIES

  • 5.1. Food is electricity for humans
  • 5.2. What is a Li-ion battery (LIB)?
  • 5.3. Anode alternatives: Lithium titanium and lithium metal
  • 5.4. Anode alternatives: Other carbon materials
  • 5.5. Anode alternatives: Silicon, tin and alloying materials
  • 5.6. Cathode alternatives: LNMO, NMC, NCA and Vanadium pentoxide
  • 5.7. Cathode alternatives: LFP
  • 5.8. Cathode alternatives: Sulphur
  • 5.9. Cathode alternatives: Oxygen
  • 5.10. High energy cathodes require fluorinated electrolytes
  • 5.11. Why is lithium so important?
  • 5.12. Where is lithium?
  • 5.13. How to produce lithium 1
  • 5.14. How to produce lithium 2
  • 5.15. Where is lithium used 1
  • 5.16. Where is lithium used 2
  • 5.17. Question: how much lithium do we need? 1
  • 5.18. Question: how much lithium do we need? 2
  • 5.19. Question: how much Li do we need? 3
  • 5.20. How can LIBs be improved? 1
  • 5.21. How can LIBs be improved? 2

6. BATTERY REQUIREMENT

  • 6.1. Push and pull factors in Li-ion research
  • 6.2. The battery trilemma
  • 6.3. Performance limit
  • 6.4. Form factor
  • 6.5. Cost

7. CONCLUSIONS

  • 7.1. Conclusions

CHAPTER 2: LONG FOR ALL SOLID-STATE BATTERIES

  • 8.1. Introduction

9. WHY SOLID-STATE BATTERIES

  • 9.1. A solid future?
  • 9.2. Lithium-ion batteries vs. solid-state batteries
  • 9.3. What is a solid-state battery (SSB)?
  • 9.4. How can solid-state batteries increase performance?
  • 9.5. Close stacking
  • 9.6. Energy density improvement
  • 9.7. Value propositions and limitations of solid state battery
  • 9.8. Flexibility and customisation provided by solid-state batteries

10. INTERESTS ON SOLID-STATE BATTERIES

  • 10.1. Research efforts on solid-state batteries
  • 10.2. A new cycle of interests
  • 10.3. Interests in China
  • 10.4. CATL
  • 10.5. Qing Tao Energy Development
  • 10.6. History of Qing Tao Energy Development
  • 10.7. Ganfeng Lithium
  • 10.8. Ningbo Institute of Materials Technology & Engineering, CAS
  • 10.9. WeLion New Energy Technology 1
  • 10.10. WeLion New Energy Technology 2
  • 10.11. WeLion New Energy Technology 3
  • 10.12. JiaWei Renewable Energy
  • 10.13. Enovate Motors
  • 10.14. 11 other Chinese player activities on solid state batteries
  • 10.15. Regional interests: Japan
  • 10.16. Technology roadmap according to Germany's NPE
  • 10.17. Roadmap for battery cell technology
  • 10.18. SSB project-Ionics
  • 10.19. SSB project-SBIR 2016
  • 10.20. Automakers' efforts - BMW
  • 10.21. Automakers' efforts - Volkswagen
  • 10.22. Automakers' efforts - Hyundai
  • 10.23. Automakers' efforts - Toyota 1
  • 10.24. Automakers' efforts - Toyota 2
  • 10.25. Automakers' efforts - Fisker Inc.
  • 10.26. Automakers' efforts - Bolloré
  • 10.27. Battery vendors' efforts - Panasonic
  • 10.28. Battery vendors' efforts - Samsung SDI
  • 10.29. Academic views - University of Münster 1
  • 10.30. Academic views - University of Münster 2
  • 10.31. Academic views - Giessen University
  • 10.32. Academic views - Fraunhofer Batterien

CHAPTER 3: SOLID-STATE BATTERIES

12. INTRODUCTION TO SOLID-STATE BATTERIES

  • 12.1. History of solid-state batteries
  • 12.2. Solid-state battery configurations 1
  • 12.3. Solid-state battery configurations 2
  • 12.4. Solid-state electrolytes
  • 12.5. Differences between liquid and solid electrolytes
  • 12.6. How to design a good solid-state electrolyte
  • 12.7. Classifications of solid-state electrolyte
  • 12.8. Thin film vs. bulk solid-state batteries
  • 12.9. Scaling of thin ceramic sheets
  • 12.10. How safe are solid-state batteries?

13. SOLID POLYMER ELECTROLYTES

  • 13.1. Applications of polymer-based batteries
  • 13.2. LiPo batteries, polymer-based batteries, polymeric batteries
  • 13.3. Types of polymer electrolytes
  • 13.4. Electrolytic polymer options
  • 13.5. Advantages and issues of polymer electrolytes
  • 13.6. PEO for solid polymer electrolyte
  • 13.7. Polymer-based battery: Solidenergy
  • 13.8. Coslight
  • 13.9. BrightVolt batteries
  • 13.10. BrightVolt product matrix
  • 13.11. BrightVolt electrolyte
  • 13.12. Hydro-Québec
  • 13.13. Solvay 1
  • 13.14. Solvay 2
  • 13.15. IMEC 1
  • 13.16. IMEC 2
  • 13.17. Polyplus
  • 13.18. SEEO
  • 13.19. Innovative electrode for semi-solid electrolyte batteries
  • 13.20. Redefining manufacturing process by 24M
  • 13.21. Ionic Materials
  • 13.22. Technology and manufacturing process of Ionic Materials
  • 13.23. Prieto Battery
  • 13.24. Companies working on polymer solid state batteries
  • 13.25. Solid Inorganic Electrolytes
  • 13.26. Types of solid inorganic electrolytes for Li-ion 1
  • 13.27. Types of solid inorganic electrolytes for Li-ion 2
  • 13.28. Oxide Inorganic Electrolyte
  • 13.29. Oxide electrolyte
  • 13.30. Garnet
  • 13.31. QuantumScape's technology 1
  • 13.32. QuantumScape's technology 2
  • 13.33. Karlsruhe Institute of Technology
  • 13.34. Nagoya University
  • 13.35. Toshiba
  • 13.36. NASICON-type
  • 13.37. Lithium ion conducting glass-ceramic powder-01
  • 13.38. LICGCTM PW-01 for cathode additives
  • 13.39. Ohara's products for solid state batteries
  • 13.40. Ohara / PolyPlus
  • 13.41. Application of LICGC for all solid state batteries
  • 13.42. Properties of multilayer all solid-state lithium ion battery using LICGC as electrolyte
  • 13.43. LICGC products at the show
  • 13.44. Manufacturing process of Ohara glass
  • 13.45. Taiyo Yuden
  • 13.46. Schott
  • 13.47. Perovskite
  • 13.48. LiPON
  • 13.49. LiPON: construction
  • 13.50. Players worked and working LiPON-based batteries
  • 13.51. Cathode material options for LiPON-based batteries
  • 13.52. Anodes for LiPON-based batteries
  • 13.53. Substrate options for LiPON-based batteries
  • 13.54. Trend of materials and processes of thin-film battery in different companies
  • 13.55. LiPON: capacity increase
  • 13.56. Technology of Infinite Power Solutions
  • 13.57. Cost comparison between a standard prismatic battery and IPS' battery
  • 13.58. Thin-film solid-state batteries made by Excellatron
  • 13.59. Johnson Battery Technologies
  • 13.60. JBT's advanced technology performance
  • 13.61. Ultra-thin micro-battery-NanoEnergy®
  • 13.62. Micro-Batteries suitable for integration
  • 13.63. From limited to mass production-STMicroelectronics
  • 13.64. Summary of the EnFilm™ rechargeable thin-film battery
  • 13.65. CEA Tech
  • 13.66. Ilika 1
  • 13.67. Ilika 2
  • 13.68. Ilika 3
  • 13.69. TDK
  • 13.70. CeraCharge's performance
  • 13.71. Main applications of CeraCharge
  • 13.72. ProLogium: Solid-state lithium ceramic battery
  • 13.73. ProLogium: EV battery pack assembly
  • 13.74. FDK
  • 13.75. Applications of FDK's solid state battery
  • 13.76. Companies working on oxide solid state batteries
  • 13.77. Sulphide Inorganic Electrolyte
  • 13.78. Solid Power
  • 13.79. LISICON-type 1
  • 13.80. LISICON-type 2
  • 13.81. Hitachi Zosen's solid-state electrolyte
  • 13.82. Hitachi Zosen's batteries
  • 13.83. Solid-state electrolytes - Konan University
  • 13.84. Tokyo Institute of Technology
  • 13.85. Argyrodite
  • 13.86. Companies working on sulphide solid state batteries
  • 13.87. Others
  • 13.88. Li-hydrides
  • 13.89. Li-halides
  • 13.90. Summary
  • 13.91. Advantages and issues with inorganic electrolytes 1
  • 13.92. Advantages and issues with inorganic electrolytes 2
  • 13.93. Advantages and issues with inorganic electrolytes 3
  • 13.94. Advantages and issues with inorganic electrolytes 4
  • 13.95. Dendrites - ceramic fillers and high shear modulus are needed
  • 13.96. Comparison between inorganic and polymer electrolytes 1
  • 13.97. Comparison between inorganic and polymer electrolytes 2

14. PATENT ANALYSIS AROUND SOLID-STATE ELECTROLYTES

  • 14.1. Overview of investigation
  • 14.2. Total number of patents by electrolyte type and material
  • 14.3. The SSE patent portfolio of key assignees

15. PATENT ANALYSIS ON NON-COMPOSITE INORGANIC OR POLYMERIC SOLID-STATE ELECTROLYTE

  • 15.1. Total number of patents by SSE material
  • 15.2. Patent application fluctuations from 2014 to 2016
  • 15.3. Legal status of patents in 2018 by SSE material
  • 15.4. Key assignee's patent portfolio of non-composite SSEs
  • 15.5. PEO: Patent Activity Trends
  • 15.6. LPS: Patent Activity Trends
  • 15.7. LLZO: Patent Activity Trends
  • 15.8. LLTO: Patent Activity Trends
  • 15.9. Lithium Iodide: Patent Activity Trends
  • 15.10. LGPS: Patent Activity Trends
  • 15.11. LIPON: Patent Activity Trends
  • 15.12. LATP: Patent Activity Trends
  • 15.13. LAGP: Patent Activity
  • 15.14. Argyrodite: Patent Activity Trends
  • 15.15. LiBH4: Patent Activity Trends
  • 15.16. Conclusions

16. COMPOSITE ELECTROLYTES

  • 16.1. The best of both worlds?
  • 16.2. Toshiba

17. SOLID-STATE ELECTROLYTES BEYOND LI-ION

  • 17.1. Solid-state electrolytes in lithium-sulphur batteries
  • 17.2. Lithium sulphur solid electrode development phases
  • 17.3. Solid-state electrolytes in lithium-air batteries
  • 17.4. Solid-state electrolytes in metal-air batteries
  • 17.5. Solid-state electrolytes in sodium-ion batteries 1
  • 17.6. Solid-state electrolytes in sodium-ion batteries 2
  • 17.7. Solid-state electrolytes in sodium-sulphur batteries 1
  • 17.8. Solid-state electrolytes in sodium-sulphur batteries 2

CHAPTER 4: SOLID-STATE BATTERY MANUFACTURING

19. SOLID-STATE BATTERY MANUFACTURING

  • 19.1. The real bottleneck
  • 19.2. The incumbent process: lamination
  • 19.3. Solid battery fabrication process
  • 19.4. Manufacturing equipment for solid-state batteries
  • 19.5. Typical manufacturing method of the all solid-state battery (SMD type)
  • 19.6. Are thin film electrolytes viable?
  • 19.7. Summary of main fabrication technique for thin film batteries
  • 19.8. PVD processes for thin-film batteries 1
  • 19.9. PVD processes for thin-film batteries 2
  • 19.10. PVD processes for thin-film batteries 3
  • 19.11. Ilika's PVD approach
  • 19.12. Avenues for manufacturing
  • 19.13. Toyota's approach 1
  • 19.14. Toyota's approach 2
  • 19.15. Hitachi Zosen's approach
  • 19.16. Sakti3's PVD approach
  • 19.17. Planar Energy's approach

CHAPTER 5: COMPANY PROFILES

21. COMPANY PROFILES

22. APPENDIX

  • 22.1. Glossary of terms - specifications
  • 22.2. Useful charts for performance comparison
  • 22.3. Battery categories
  • 22.4. Commercial battery packaging technologies
  • 22.5. Comparison of commercial battery packaging technologies
  • 22.6. Actors along the value chain for energy storage
  • 22.7. Primary battery chemistries and common applications
  • 22.8. Numerical specifications of popular rechargeable battery chemistries
  • 22.9. Battery technology benchmark
  • 22.10. What does 1 kilowatthour (kWh) look like?
  • 22.11. Technology and manufacturing readiness
  • 22.12. List of acronyms
Back to Top