無料レポート プレゼントキャンペーン 実施中 : メールサービスに新規登録いただいた方にご用意した無料レポートをご提供

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

摩擦帯電によるエネルギーハーベスティングとTENG (Triboelectric Nanogenerator) :2018-2028年

Triboelectric Energy Harvesting (TENG) 2018-2028

発行 IDTechEx Ltd. 商品コード 367387
出版日 ページ情報 英文 136 pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=113.93円で換算しております。
Back to Top
摩擦帯電によるエネルギーハーベスティングとTENG (Triboelectric Nanogenerator) :2018-2028年 Triboelectric Energy Harvesting (TENG) 2018-2028
出版日: 2018年03月30日 ページ情報: 英文 136 pages
概要

当レポートでは、摩擦帯電によるエネルギーハーベスティングの技術開発の動向と事業化の可能性を調査し、エネルギーハーベスティング (EH) および摩擦帯電効果の定義と概要、TENG (Triboelectric Nanogenerator) の動作原理、TENGの研究開発の動向、実験的設計の例、商業化の機会と潜在的用途、TENGの各種材料の市場機会などをまとめています。

第1章 エグゼクティブサマリー・総論

第2章 イントロダクション

  • エネルギーハーベスティング (EH) の定義と概要
  • 摩擦帯電効果
  • TENG (Triboelectric nanogenerator) の動作原理・デバイスの最適化

第3章 研究の焦点

  • 概要
  • 用語
  • TENGの進歩
  • TENG:標準規格・独立系評価の必要性
  • 統合型マルチモードエネルギーハーベスティング
    • 進歩
    • TENGマルチモードエネルギーハーベスティング
  • 実験的TENG設計の例
  • 自己給電式センサー
    • 圧力マッピング
    • 最近の例:自己給電埋め込み式心臓モニター

第4章 TENGデバイスの商業化の機会

  • EHの商業化とTENGの市場機会
  • EHトランデューサーオプションの比較
    • 製造状況:技術別
    • EH技術の望まれる特徴の比較
    • 解消すべき課題

第5章 潜在的用途:マイクロワットからワットまで

  • IoT・自己給電式センサー
    • IoT市場の力学
    • 市場機会
  • 自己給電式センサー
    • 概要
    • プリンティングセンサーの例
    • IOT向け自己給電式摩擦帯電活性センサー、など
    • ウェアラブルセンサーの予測
    • その他の化学・ガス・血糖センサーの予測
  • ウェアラブル技術
    • 概要
    • TENGが対応できるウェアラブル技術の動向
    • ベーシックなウェアラブルデバイス:コンポーネントタイプ別
    • ウェアラブルセンサーのカテゴリー化
    • ウェアラブルデバイス:市場部門別、など
  • マイクロコントローラー
    • 概要
    • 予測
  • ハプティクス
    • 概要
    • ハプティクスの製造量 vs 技術的対応力

第6章 各種用途:10ワットからメガワットまで

  • 概要
  • 各種ビークルにおける市場機会
    • 予測・エンドゲーム
    • EIVピザバン:道を示す
    • 自動車用エネルギーハーベスティング
    • 船舶用エネルギーハーベスティング
    • 航空機用エネルギーハーベスティング
  • TENG給電によるファブリックの潜在性
    • Eテキスタイル
  • エネルギー貯蔵と充電

第7章 各種材料の市場機会

  • 概要
  • 機能化とその他のオプション
  • 層状TENGの材料
  • 縦アーチTENGの材料
  • テキスタイルTENGの材料
  • 回転TENGの材料
  • その他のTENG材料

第8章 インタビューの例

目次

Title:
Triboelectric Energy Harvesting (TENG) 2018-2028
Commercialisation: Interviews, Forecasts, Materials, Opportunities.

"Triboelectric energy harvesting transducers will be a $480 million market in 2028"

There are excellent summaries of the rapid academic progress in triboelectric energy harvesting including record breaking parameters achieved in record-breaking time from its inventions in 2012. There is now a deluge of proof-of-principle demonstrations for highly imaginative applications from microwatts to megawatts, millimetre devices to a one square kilometre blanket on the sea but what is the true situation in terms of feasibility and market potential for the devices and materials? What are the most commercially promising designs being progressed? What are the most important impediments to commercialisation and what should be done about them? What are the materials and device opportunities? Here are the answers. In a world first, analyst IDTechEx has researched the technological roadmaps, conducted interviews, created forecasts and assessed materials opportunities from an industrial viewpoint. The report identifies gaps in the market and prioritises impediments to be overcome. It is called, "Triboelectric Energy Harvesting TENG 2018-2028".

The report navigates the often misleading jargon and double meanings and surfaces the big issues and opportunities with easily grasped infographics. This is a report for investors and materials and device makers. It will assist those planning to use the devices and merge them with their own and governments apportioning research funds. Those in green technology will be able to grasp the opportunity and the challenges without being blinded by mathematics.

After a self-sufficient "Executive summary and conclusions" for those who only have time for this, there is an introduction entirely aimed at commercialisation not history or nostalgia.

The "Introduction" then explains energy harvesting and specifically triboelectricity and the modes of operation and devices resulting, relating these to other forms of electrostatic and other energy harvesting to reveal lessons from the real world. The chapter on the "Focus of Research" summarises and assesses claims using detailed new comparison charts and infographics. Both individual TENG power sources and integrated TENG sensors are assessed. Chapter four is particularly thorough in addressing "Commercialisation opportunities for TENG devices" based on global visits and privileged data from PhD level IDTechEx analysts. For example, there are tables comparing the commercially desirable attributes of energy harvesting technologies and how triboelectrics fits in. IDTechEx shares its new projections of many relevant markets in a chapter on "Potential applications - microwatts to watts" including wearables, microcontrollers, single board computers and the Internet of Things. The chapter on "Applications from ten watts to megawatts" applies IDTechEx projections for electric vehicles land, water and air etc to the triboelectric capability expected. The report closes with a detailed chapter on "Materials opportunities" relating needs to achievements to reveal gaps in the market. Then the new "Interviews" are exemplified in the last part of the report which comes with 30 minutes of free consultancy.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Purpose of this report
  • 1.2. Primary conclusions
    • 1.2.1. Market
    • 1.2.2. Versatility
    • 1.2.3. Entry points
    • 1.2.4. Valued benefits
    • 1.2.5. High power opportunity
    • 1.2.6. Conditions of success
  • 1.3. Triboelectric harvesting device timeline 2018-2038 with mean power magnitude
  • 1.4. Triboelectricity
    • 1.4.1. Definition
    • 1.4.2. Triboelectric dielectric series
    • 1.4.3. Triboelectric dielectric series examples showing wide choice of properties
  • 1.5. Triboelectric nanogenerator (TENG)
  • 1.6. Achievement
  • 1.7. Four ways to make a TENG
    • 1.7.1. Overview
    • 1.7.2. TENG modes with advantages, potential uses
    • 1.7.3. Research focus on the four modes
    • 1.7.4. Parametric advantages and challenges of triboelectric EH
    • 1.7.5. Self Healing Triboelectrics?
  • 1.8. Where TENGs fit in the EH scene
    • 1.8.1. Technology choice by intermittent power generated
    • 1.8.2. TENG relative benefits
    • 1.8.3. TENG relative benefits scoped: device needs for potentially large markets
    • 1.8.4. The vibration harvesting opportunity
  • 1.9. Materials opportunities
    • 1.9.1. Materials in experimental TENGs and those likely in production
  • 1.10. Market forecasts
    • 1.10.1. TENG low vs high power 2018-2028 $ million
  • 1.11. Triboelectric Numbers (million) vs alternatives 2018-2028
  • 1.12. Triboelectric Unit price (US dollars) vs alternatives 2018-2028
  • 1.13. Triboelectric Market Value vs alternatives 2018-2028
  • 1.14. Interview with Prof. Zhong Lin Wang Gatech
    • 1.14.1. The triboelectric DSSC textile
    • 1.14.2. Three fibre-shaped components
  • 1.15. Triboelectric wave, tire and shirt power, Clemson University
  • 1.16. Your gadget's next power supply? Your body

2. INTRODUCTION

  • 2.1. Energy harvesting (EH) definition and overview
    • 2.1.1. Features of energy harvesting
    • 2.1.2. Low power vs high power off-grid
    • 2.1.3. Types of EH energy source
    • 2.1.4. Ford, H2P and EPA assessment of regeneration potential in a car
    • 2.1.5. Candidates for EH by power
    • 2.1.6. Energy harvesting transducer options compared for all applications
  • 2.2. Triboelectric effect
    • 2.2.1. Overview
    • 2.2.2. Measured triboelectric positive series
    • 2.2.3. Measured triboelectric negative series
    • 2.2.4. Commentary
    • 2.2.5. Standard comparisons
  • 2.3. Triboelectric nanogenerator (TENG) operating principle and device optimisation
    • 2.3.1. Contact and sliding modes compared
    • 2.3.2. Single electrode and contactless modes compared
    • 2.3.3. Electrostatics in energy harvesting

3. FOCUS OF RESEARCH

  • 3.1. Overview
  • 3.2. Terminology
  • 3.3. TENG progress
  • 3.4. Best research-cell efficiencies
  • 3.5. Photovoltaics becomes cheaper than large onshore wind in 2020
  • 3.6. Photovoltaics experience curve 2018
  • 3.7. Need for standards and independent appraisal of TENG claims
  • 3.8. Integrated multi-mode energy harvesting
    • 3.8.1. Evolution
    • 3.8.2. TENG multi-mode energy harvesting
  • 3.9. Examples of experimental TENG designs 2013-6
  • 3.10. Self-powered sensors
    • 3.10.1. Pressure mapping, touch
    • 3.10.2. Example in 2016: self-powered implantable heart monitor

4. COMMERCIALISATION OPPORTUNITIES FOR TENG DEVICES

  • 4.1. Commercialisation of EH of motion showing TENG opportunities
  • 4.2. EH transducer options compared
    • 4.2.1. Production status by technology
    • 4.2.2. Comparison of desirable features of EH technologies
    • 4.2.3. Key issues to address

5. POTENTIAL APPLICATIONS: MICROWATTS TO WATTS

  • 5.1. Internet of Things (IoT) and self-powered sensors
    • 5.1.1. IoT market dynamics
    • 5.1.2. Opportunity
  • 5.2. Self-powered sensors
    • 5.2.1. Overview
    • 5.2.2. Examples of sensors with printing
    • 5.2.3. Self-powered triboelectric active sensors for IOT etc
    • 5.2.4. Wearable sensor forecasts
    • 5.2.5. Other chemical, gas and glucose sensor forecasts
  • 5.3. Wearable technology
    • 5.3.1. Overview
    • 5.3.2. Trends in wearable technology that TENGs must address
    • 5.3.3. Basic wearable device by component type
    • 5.3.4. Categorisation of wearable sensors
    • 5.3.5. "Wearables"- the hype is fading and shifting to new sectors
    • 5.3.6. Wearables by market sector
  • 5.4. Microcontrollers
    • 5.4.1. Overview
    • 5.4.2. Forecasts
  • 5.5. Haptics
    • 5.5.1. Overview
    • 5.5.2. Haptics volume vs technology readiness

6. APPLICATIONS FROM TEN WATTS TO MEGAWATTS

  • 6.1. Overview
  • 6.2. The vehicle opportunity
    • 6.2.1. Forecast and end game
    • 6.2.2. EIV pizza van shows the way
    • 6.2.3. Harvesting for on-road vehicles
    • 6.2.4. Harvesting for marine vehicles
    • 6.2.5. Harvesting for air vehicles
  • 6.3. Potential for a TENG power fabric
    • 6.3.1. E-textiles
  • 6.4. Charging high power energy storage

7. MATERIALS OPPORTUNITIES

  • 7.1. Overview
  • 7.2. Functionalisation and other options
  • 7.3. Materials for 24 laminar TENG
  • 7.4. Materials for 12 vertical arch TENG
  • 7.5. Materials for 3 textile TENG
  • 7.6. Materials for 6 rotating TENG
  • 7.7. Materials for 10 other TENG variants

8. EXAMPLES OF INTERVIEWS

9. APPENDIX - ENERGY HARVESTING TIRES

Back to Top