株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

有人電気航空機 (MEA) 市場:2018年〜2028年

Manned Electric Aircraft 2018-2028

発行 IDTechEx Ltd. 商品コード 357119
出版日 ページ情報 英文 275 Slides
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=111.57円で換算しております。
Back to Top
有人電気航空機 (MEA) 市場:2018年〜2028年 Manned Electric Aircraft 2018-2028
出版日: 2018年04月30日 ページ情報: 英文 275 Slides
概要

当レポートでは、有人電気航空機 (MEA) 市場の長期的展望を調査し、MEA化の理由、MEAの課題と市場機会、MEAを構成する主要技術の概要と技術部門別の動向、エネルギー自立型ビークル (EIV) の可能性、MEA販売台数・価格の予測、主要事業者による取り組みの例などをまとめています。

第1章 エグゼクティブサマリー・総論

第2章 イントロダクション

  • 過去から学ぶ教訓
  • 現在の状況
  • 他の例:ひとつの機体に複数のパワートレインオプションを提供するトレンド
  • 初の商用4シートハイブリッド
  • コンテスト:新たなバッテリー・燃料電池パネル
  • HY4 4人乗り燃料電池航空機のDLRプロジェクト
  • Airbusの新しい自律型航空機
  • ゼロエミッション航空輸送 - 4人乗り航空機HY4の最初のフライト
  • Zee.Aero による最初の電気・VOTL航空機
  • Hamiltonの曲技機
  • Airbusのフライングカーのプロトタイプは2017年末までに準備が整う
  • Zunum-Boeing
  • Uberの空中タクシー
  • エアタクシー
  • Zee.Aero は2017年に飛行
  • トヨタは日本で「フライングカープロジェクトを支援」
  • chAIR

第3章 パワートレインの各種タイプ

  • エレクトリックパワートレインとは?
  • ピュアエレクトリックかハイブリッドか?
    • 例:PC Aero Elektra One
    • 例:E-Genius, SUGAR Volt
  • ハイブリッド電気航空機の各種タイプ
    • パラレルハイブリッド
    • シリーズハイブリッド
  • 典型的なハイブリッドデューティサイクルとその例
    • デューティサイクル
    • Bye Aerospace および XTI USA
    • Cambridge University Song hybrid
    • Equator P2 Xcursion
    • バイオ燃料ソーラーハイブリッド
    • DARPA VTOL
  • Airbusのハイブリッド電気航空機:概要
  • マイルド vs ストロングハイブリッド:自動車から学ぶ教訓
  • EVパワートレインと技術予測
  • エネルギー自立型エレクトリックビークル (EIV)
  • 主要EIV技術
  • モーターとモータージェネレーター
  • レンジエクテンダー

第4章 エネルギー貯蔵

  • 選択肢
  • エレクトリックビークルにおけるエネルギー貯蔵技術の役割
  • リチウムイオン電池の安全強化
  • 各種システムの動作原理
  • スーパーコンデンサーからリチウムイオン電池へ
  • 将来のハイブリッド&ピュアエレクトリック機とエネルギー貯蔵の選択肢とのマッチング:他の産業からの教訓
    • 将来のエネルギー貯蔵オプションのマッピング
  • リチウムイオン電池とスーパーコンデンサー
  • ストラクチュラルエレクトロニクスによる超軽量化

第5章 エネルギーハーベスティングとエネルギーの再生

  • 定義と背景
  • Faradair BEHA

第6章 エネルギー自立型ビークル (EIV)

  • エネルギー自立型エレクトリックビークル
  • まだ大型ハイブリッドは無い
  • 従来型航空機のパワーエレクトロニクス
  • 旅客機の地上での電気自動車化
  • 回転電気機械とパワーエレクトロニクスの改良の大きな潜在性
  • 将来の設計:NASAの見解

第7章 フライングカー (空飛ぶクルマ):必要か、それとも可能か?

  • フライングカー:必要か、それとも可能か?
  • Aeromobilのフライングカー:スロバキア生まれのフライングカー?
  • 空中および GyroDrive
  • トヨタ:燃料電池か、それともフライングカーか?
  • レースは始まっているか?
  • フライングカーは空港を利用
  • シングルシートのみが実行可能か?
  • 都市部の交通渋滞に有効:より良い代替手段
  • ハイブリッドVTOLフライングカーの実行可能性
  • Elon Musk, Larry Page および Nikhil Goel

第8章 CAFE TENTH ELECTRIC AIRCRAFT SYMPOSIUM REPORT

目次

Title:
Manned Electric Aircraft 2018-2028
Hybrid & pure electric technology roadmap, market forecasts, companies, models, MEA convergence.

"In 2028, manned electric aircraft will be a $7 billion business"

This report of over 270 slide format pages is replete with new forecasts, analysis and infographics seeing the future. The key parts of recent presentations by all the key players are embedded in this work, almost entirely researched in 2017 by award winning PhD level IDTechEx analysts travelling worldwide. Interviews, IDTechEx databases, web searches and conference attendance were extensively used. Old information is useless in this now fast moving field.

The structure of the report is a comprehensive Executive Summary and Conclusions then Introduction looking at lessons from the past then chapters on types of powertrain involved, motors and motor generators, energy storage, energy harvesting and regeneration, the end game of Energy Independent Electric Vehicles EIV and finally More Electric Aircraft MEA programs and how they are migrating to electric aircraft. Throughout there are many examples of electric aircraft from airships to helicopters and microlights, both for sale and planned. Specifications are given for many of these and key components for the future are discussed in depth. The tone is critical not evangelical.

The coverage in the report includes 2018-2028 forecasts of low and high priced electric aircraft sales by number, unit price and market value and a view of figures up to 2031 including assessments by several leading players. The subject matter includes looking at how electric aircraft have largely followed electric land and water vehicles. Pure electric small ones appeared first, about 50 years after the first electric boats and cars. Hybrid ones are needed for the longer distances and tougher duty cycles and only now are these getting serious investment. The report finds that the delays are only partly explained by the tougher demands and regulatory requirements of aircraft and how things are now changing with much larger commitments. In 2016, Siemens and Airbus agreed to pool 200 engineers to work on them, the level of effort Toyota allotted to hybrid cars twenty years earlier, with major commercial success resulting today. Toyota enjoys well over $20 billion dollars of sales of electric cars, buses and forklifts with Honda and BMW successful too - interesting because all three are now tackling aircraft. Indeed, Google and Facebook are involved in electric cars and aircraft and Apple is interested so it is wake up time. The report analyses the opportunities in new aircraft and their changing key components.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Unique approach of this report
  • 1.2. Some important findings
  • 1.3. Why go electric for manned aircraft?
    • 1.3.1. Many other benefits
  • 1.4. How to transition to electric aircraft: MEA, hybrid, pure electric
    • 1.4.1. Airbus Vahana personal aircraft announcement 2017
  • 1.5. MEA issues and opportunities
  • 1.6. Where electric aircraft are headed: range anxiety to range superiority
  • 1.7. Manned aircraft lagged land-based electric vehicles
    • 1.7.1. Aviation a follower in electrification but upturn arrives
    • 1.7.2. Hybrids should have been first
    • 1.7.3. Hybrids: running before you can walk
    • 1.7.4. Example: Eraole hybrid plane
  • 1.8. Trend to larger electric aircraft
    • 1.8.1. Overview of major issues
    • 1.8.2. Viability of pure electric larger aircraft: timeline
  • 1.9. Electrification of aircraft in general: rapid progress
    • 1.10. Electric aircraft already commercialised
    • 1.10.1. Examples
    • 1.10.2. Sun Flyer 4
    • 1.10.3. Viability of electric primary trainers already
  • 1.11. Routes to further commercialisation of electric aircraft
    • 1.11.1. Example - Lilium ultralight VTOL aircraft prototype
  • 1.12. Pure electric manned aircraft arriving
    • 1.12.1. Examples: Powered paraglider Skyrider One and Volocopter
    • 1.12.2. Example: Airbus E-Fan
  • 1.13. Hybrid electric aircraft arriving
    • 1.13.1. HYPSTAIR powertrain for general aviation
    • 1.13.2. Hybrid electric helicopters, multicopters
    • 1.13.3. Airbus eThrust concept with DEP
    • 1.13.4. NASA Sceptor concept with DEP
    • 1.13.5. Magnus eFusion Light Sport E-Plane
  • 1.14. Megawatt electric aircraft
  • 1.15. Siemens 260 kW electric aircraft motor makes first public flight July 2016
  • 1.16. Siemens electric aerobatic plane gains two world speed records September 2017
  • 1.17. Retrofit: Ampaire
  • 1.18. Choice of powertrains is influenced by many factors
  • 1.19. New end game: Energy Independent Vehicles EIV
    • 1.19.1. SolarStratos
  • 1.20. Key enabling technologies in future: examples
    • 1.20.1. Energy harvesting including regeneration
    • 1.20.2. Structural electronics tears up the rule book
    • 1.20.3. Power electronics and other key enablers
  • 1.21. Less mechanics: more electronics
  • 1.22. Becoming one business land, water, air - hybrid and pure electric
  • 1.23. Regulations have impeded small e-aircraft in the USA
  • 1.24. Ambition and freedom in Europe
  • 1.25. Progress in East Asia
    • 1.25.1. China
    • 1.25.2. Japan
  • 1.26. Hybrid airliner concept late 2017
  • 1.27. Market forecasts
    • 1.27.1. Timelines 2017-2040: IDTechEx, Airbus, Rolls Royce, others
    • 1.27.2. MEA target and roadmaps converge to EV for 2035
    • 1.27.3. Manned electric aircraft and airliner forecasts
    • 1.27.4. Manned electric aircraft market forecasts 2018-2028 including hybrid
    • 1.27.5. USA has huge build-up of old small aircraft and issues
  • 1.28. Hybrid electric plane could cut pollution
  • 1.29. GE Aviation and Hybrid Electronic Propulsion
  • 1.30. Wright Electric and Easyjet
  • 1.31. Airbus and HAX call for start-ups
  • 1.32. Boeing Investments October 2017
  • 1.33. Joby Aviation February 2018
  • 1.34. Autonomous air taxi New Zealand March 2018

2. INTRODUCTION

  • 2.1. Lessons from the past
  • 2.2. Situation today
  • 2.3. Other examples: trend to offering several powertrain options in one airframe
  • 2.4. First commercial four seat hybrid
  • 2.5. Contest in 2015: new battery and fuel cell planes
  • 2.6. DLR project for HY4 four-passenger fuel cell aircraft
  • 2.7. New Airbus autonomous aircraft November 2016
  • 2.8. Zero-emission air transport - first flight of four-seat passenger aircraft HY4 - September 2016
  • 2.9. The first electric and VTOL aircraft by Zee.Aero - October 2016
  • 2.10. Hamilton aerobatic aircraft
  • 2.11. Airbus flying car prototype ready by the end of 2017
  • 2.12. Zunum-Boeing
  • 2.13. Uber air taxis
    • 2.13.1. Aurora eVTOL USA
  • 2.14. Air taxis - the legal position
  • 2.15. Zee.Aero flies in 2017
  • 2.16. Toyota 'backs flying car project' in Japan
  • 2.17. chAIR
  • 2.18. Fanwing EU SOAR

3. PROGRESS TO ELECTRIC FEEDER AIRLINERS

  • 3.1. Introduction
    • 3.1.1. Sunseeker Duo USA
    • 3.1.2. Eviation and their All-Electric Aircraft
    • 3.1.3. The More Electric Aircraft MEA
    • 3.1.4. Not there yet for large hybrids
    • 3.1.5. Power electronics in conventional aircraft
    • 3.1.6. Airliner becomes an electric vehicle when on the ground
    • 3.1.7. Great potential to improve rotating electrical machines and power electronics
    • 3.1.8. Future design space: NASA view
    • 3.1.9. SolarStratos Switzerland
    • 3.1.10. Zunum
    • 3.1.11. Airbus
    • 3.1.12. Wright Electric
    • 3.1.13. Norway aims for 100% electric short-haul flights by 2040

4. TYPES OF POWERTRAIN

  • 4.1. What is an electric powertrain?
  • 4.2. Pure electric or hybrid
    • 4.2.1. Example: PC Aero Elektra One
    • 4.2.2. Examples: E-Genius, SUGAR Volt
  • 4.3. Types of hybrid electric aircraft
    • 4.3.1. Parallel hybrid
    • 4.3.2. Series hybrid
  • 4.4. Typical hybrid duty cycle and examples
    • 4.4.1. Duty cycle
    • 4.4.2. Bye Aerospace and Sun Flyer - IDTechEx Santa Clara Show Nov 2017
    • 4.4.3. Cambridge University Song hybrid
    • 4.4.4. Equator P2 Xcursion amphibious aircraft
    • 4.4.5. Biofuel solar hybrid
    • 4.4.6. DARPA VTOL
  • 4.5. Mild vs strong hybrid: lessons from land vehicles
  • 4.6. EV powertrains and technology forecasts: 2000
  • 4.7. EV powertrains and technology forecasts: 2016
  • 4.8. EV powertrains and technology forecasts: 2017 onwards
  • 4.9. Energy independent electric vehicles EIV operational choices
  • 4.10. Key EIV technologies
  • 4.11. Motors and motor generators
    • 4.11.1. Trend to higher power to weight ratio
    • 4.11.2. Technologies in context of all EVs
    • 4.11.3. Electrical engine start for hybrid electric aircraft
    • 4.11.4. Integrated components - in-wheel
    • 4.11.5. Multimotor designs
    • 4.11.6. Superconducting propulsors and interconnects
  • 4.12. Range extenders
    • 4.12.1. Overview
    • 4.12.2. Gas turbines and rotary combustion engines
    • 4.12.3. Fuel cells

5. ENERGY STORAGE

  • 5.1. Options
  • 5.2. The role of energy storage technologies in electric vehicles
  • 5.3. Making lithium-ion batteries safer
  • 5.4. Operational Principles of Different Systems
  • 5.5. Supercapacitors to Li-ion batteries - a spectrum of functional tailoring
  • 5.6. Matching future hybrid and pure electric aircraft to energy storage choices. Learning from other industries
    • 5.6.1. Map of energy storage choices 2026-2036
  • 5.7. Supercapacitors across lithium-ion batteries
  • 5.8. Extreme lightweighting by structural electronics
    • 5.8.1. Earlier attempts at structural fuel; cells, batteries and capacitors
    • 5.8.2. Successful supercapacitor bodywork
    • 5.8.3. Many other types of structural electronics for aircraft

6. ENERGY HARVESTING AND REGENERATION

  • 6.1. Definitions and background
  • 6.2. Best Research-Cell Efficiencies

7. ENERGY INDEPENDENT VEHICLES EIV

  • 7.1. Energy independent electric vehicles
    • 7.1.1. Why we want more than mechanical energy independence
    • 7.1.2. The EIV powertrain
    • 7.1.3. EIV operational choices
    • 7.1.4. Turtle airship USA
    • 7.1.5. Solar Impulse Switzerland
    • 7.1.6. Solar Ship inflatable fixed wing aircraft Canada
    • 7.1.7. Sunstar USA
    • 7.1.8. Sunseeker Duo USA
    • 7.1.9. Eviation and their All-Electric Aircraft
    • 7.1.10. The More Electric Aircraft MEA
  • 7.2. Not there yet for large hybrids
  • 7.3. Power electronics in conventional aircraft
  • 7.4. Airliner becomes an electric vehicle when on the ground
  • 7.5. Great potential to improve rotating electrical machines and power electronics
  • 7.6. Future design space: NASA view

8. FLYING CARS: NEEDED OR POSSIBLE?

  • 8.1. Flying cars: needed or possible?
  • 8.2. Aeromobil flying car - flying car from Slovakia in 2020?
  • 8.3. Toyota: fuel cells or flying cars?
  • 8.4. Flying cars using airports
  • 8.5. Only single seat is viable?
  • 8.6. Elon Musk, Larry Page and Nikhil Goel
  • 8.7. AeroMobil reveals electric VTOL flying car concept

9. VERTICAL TAKEOFF

  • 9.1. DeLorean VTOL Electric Aircraft
  • 9.2. Airborne and the GyroDrive
  • 9.3. Combatting urban gridlock: better alternatives
  • 9.4. Hybrid VTOL flying car feasibility

10. CAFE TENTH ELECTRIC AIRCRAFT SYMPOSIUM REPORT

Back to Top