株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

エネルギー自律型電動車両:2016年〜2036年

Energy Independent Electric Vehicle Technology Roadmap 2016-2036

発行 IDTechEx Ltd. 商品コード 344979
出版日 ページ情報 英文 190 Slides
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=115.27円で換算しております。
Back to Top
エネルギー自律型電動車両:2016年〜2036年 Energy Independent Electric Vehicle Technology Roadmap 2016-2036
出版日: 2016年11月01日 ページ情報: 英文 190 Slides
概要

当レポートは、陸上、水上および空中用EIV (エネルギー自律型車両) の、既存・将来における主なイネーブリング技術について調査し、EIVおよびEIVをリードすると見られるプロジェクトのプロファイル、新しいタイプの太陽光発電・バッテリーにおけるビジネスチャンス、エネルギーハーベスティングにおける将来の動向、将来のパワートレイン効率についての検討、陸上、水上、水中、および空中といった各区分における先駆的な車両などについて、まとめています。

第1章 エグゼクティブサマリー・結論

第2章 イントロダクション

第3章 EIV (エネルギー自律型車両) にとって新たなフォーマットは非常に重要

  • ソーラーへコロイド量子ドットを噴射?
  • しかし現在は未だにほとんどがシリコン
  • 機械的および電気的なエネルギー自律型車両の間の重複
  • 車両への利用を目的としたe-ファイバープロジェクトの例
  • 欧州の Powerweave プロジェクト:飛行船・帆船、ほか

第4章 EIV におけるシステムとしてのエネルギーハーベスティング

  • EHシステム
  • Qualcommの視点
  • 自律操作 + EIKV
  • 動的ワイヤレス充電
  • 韓国:道路からの動的充電、ほか

第5章 非常に高いパワートレイン効率

第6章 超軽量

  • 超軽量
  • 軽量材料
  • 飛行機の翼の一部としての着氷防止ヒーター
  • マイクロカー重量を半減させるアルミニウム・プラスチックの利用
  • 耐荷重性・およびスマートスキン電動製品/エレクトロニクス
  • ストラクチュラルエレクトロニクスの終局

第7章 次世代のエネルギーストレージ

  • 次世代のエネルギーストレージ
  • エネルギーストレージ技術の比較
  • 次世代バッテリー:サマリー
  • なぜ今ポストリチウムイオン電池なのか?
  • リチウムイオン性能は新材料を用いても頭打ち、ほか

第8章 EIVおよび陸上用車両の先駆け:オンロード

第9章 ソーラーレーサー

第10章 EIVおよび陸上用車両の先駆け:オフロード

第11章 EIVおよび水上航海用車両の先駆け

第12章 EIVおよび水中航海用車両の先駆け

第13章 EIVおよび内陸水路用車両の先駆け

第14章 EIVおよび空中空気注入式の先駆け

IDTECHEXについて

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

This unique report explains the existing and future key enabling technologies of land, water and airborne EIVs, notably harvesting of ambient energy, extreme lightweighting, future streamlining and powertrain efficiency. 45 EIVs and projects intended to lead to EIVs are profiled, identifying business opportunities such as the new types of photovoltaics and batteries coming in and where this is taking place. It is demonstrated that interest and achievement is fairly evenly split between land, water and air vehicles and the extremely broad variety of missions performed is identified. Which countries are in the lead and what comes next across the world is revealed.

Presented as slide format packed with new analysis and infographics, it has a profusion of pictures, new comparison tables and the roadmap of technology improvement. This is understood in the context of precursors of EIVs. These include electric vehicles using photovoltaics for significant range enhancement and mechanically harvesting vehicles such as sailing boats, balloons and gliders.

Future trends in energy harvesting are clarified - such e-fibres to produce traction electricity from rain, wind or sun, and the new conformal, ultra-thin photovoltaics. There is also appraisal of new types of energy storage, including supercapacitors and lithium-ion capacitors and the scope for making them into load-bearing structures. For sailing boats, the rapid progress in using propellers that go backwards to generate electricity is evaluated.

Consideration of lightweighting even extends to structural electronics where the body of the vehicle is the electrics and electronics releasing space and weight and increasing reliability and life. Lightweighting also includes ships harvesting oncoming waves to rise in the water reducing drag: there is much more to this subject than first meets the eye and it is relevant to all vehicles not just the end game of total energy independence.

Consideration of future powertrain efficiency includes the effect of multi-mode regenerative harvesting in the vehicles and the place of streamlining. EIVs being autonomous is considered as a major synergy of technologies.

The system aspects are also considered plus the connected and dynamically charged vehicle as transitional products to EIVs.

Extensive global travel and interviews by expert multi-lingual analysts in 2015 are the basis of the research, together with primary investigations and analysis from unique IDTechEx technology and market databases.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Types of EIV and related vehicles
  • 1.2. EIV operational choices
  • 1.3. Key EIV technologies
  • 1.4. Technologies of EIVs past, present and concept including vehicles likely to be further developed into being EIVs
  • 1.5. EIV Technology roadmap 2016-2026

2. INTRODUCTION

  • 2.1. Energy Independent Vehicles: energy, definition and function
  • 2.2. Definition and primary features
  • 2.3. What is energy harvesting?
  • 2.4. Characteristics of the High Power Energy Harvesting essential to EIVs
  • 2.5. Hype curves
  • 2.6. Hype curve for EH technology 2016
  • 2.7. Hype curve for EH technology 2026
  • 2.8. Good features and challenges of the four most important EH technologies
  • 2.9. High power energy harvesting
  • 2.10. Efficiency achieved and theoretical potential for improving efficiency
  • 2.11. Energy harvesting technologies with examples of good features in blue
  • 2.12. More EH in a vehicle
  • 2.13. Intermittent power generated
  • 2.14. Comparison of pn junction and photoelectrochemical PV
  • 2.15. Priorities for high power EH in EIVs, for primary traction power, with examples
  • 2.16. Main PV options beyond silicon
  • 2.17. Chasing affordable, ultra-lightweight conformal PV for EIVs
  • 2.18. Thin, lightweight Fresnel lens concentrator
  • 2.19. PV cost and efficiency trends

3. NEW FORMATS ARE VERY IMPORTANT FOR EIVS

  • 3.1. New formats are very important for EIVs
  • 3.2. Colloidal Quantum Dot spray on solar?
  • 3.3. But mostly still silicon today
  • 3.4. Overlap between mechanically and electrically energy independent vehicles
  • 3.5. Examples of e-fiber projects aimed at use in vehicles
  • 3.6. European Powerweave project: airships & sails
  • 3.7. Hybrid piezo photovoltaic material
  • 3.8. Triboelectricity is being developed for car tires in 2015
  • 3.9. EIVs - more than adding something to a vehicle
  • 3.10. EH system
  • 3.11. Autonomous operation + EIV: a synergistic ecosystem
  • 3.12. Korea - dynamic charging from road
  • 3.13. Dynamic charging will use very low cost electricity

4. ENERGY HARVESTING AS SYSTEMS IN EIVS

  • 4.1. EH system
  • 4.2. Qualcomm vision
  • 4.3. Autonomous operation + EIKV
  • 4.4. Dynamic wireless charging
  • 4.5. Korea - dynamic charging from road
  • 4.6. Dynamic charging will use very low cost electricity
  • 4.7. Energy harvesting as systems in EIVs
  • 4.8. EH system
  • 4.9. Internal vehicle efficiency improvement by EH - progress towards EIVs

5. EXTREME POWERTRAIN EFFICIENCY

  • 5.1. Extreme powertrain efficiency

6. EXTREME LIGHTWEIGHTING

  • 6.1. Extreme lightweighting
  • 6.2. Lightweighting materials
  • 6.3. De-icing heater as part of an aircraft wing
  • 6.4. Use of aluminium and plastics to halve microcar weight
  • 6.5. Load-bearing and smart skin electrics/electronics
  • 6.6. Structural electronics (referring to electrics and electronics) is the end game for most EIV components
  • 6.7. Lightweighting of electronic components
  • 6.8. Tesla S chassis largely made of aluminium

7. NEXT GENERATION ENERGY STORAGE

  • 7.1. Next generation energy storage
  • 7.2. Energy storage technologies in comparison
  • 7.3. Next generation batteries: summary
  • 7.4. Why post lithium-ion batteries now?
  • 7.5. Li-ion performance will plateau even with new materials
  • 7.6. US DoE projections of traction battery cost
  • 7.7. What are post Li-ion battery technology candidates?
  • 7.8. Challenges for Post Lithium-ion Batteries
  • 7.9. Mainstream market requirements: Performance and price
  • 7.10. Automotive Lithium Battery Price evolution at pack level
  • 7.11. Battery price trends per sector
  • 7.12. Technology maturity roadmap per market segment
  • 7.13. Technologies of Post Lithium-ion Batteries
  • 7.14. Benchmarking of theoretical battery performance
  • 7.15. Benchmarking of practical battery performance 2015
  • 7.16. Why Silicon anode batteries?
  • 7.17. Silicon anode
  • 7.18. Motivation - why Lithium Sulfur batteries?
  • 7.19. Challenges Lithium Sulfur battery
  • 7.20. Why solid state Li-ion or other batteries?
  • 7.21. Solid state batteries?
  • 7.22. Lithium capacitor
  • 7.23. Supercapacitors
  • 7.24. Supercapacitors and hybrid supercapacitor
  • 7.25. Nomenclature
  • 7.26. Lithium capacitors technology performance of products available today
  • 7.27. Sodium ion batteries
  • 7.28. Summary of technology challenges for future traction batteries
  • 7.29. EIV technology spawns advances for all vehicles
  • 7.30. Energy Independent Vehicles EIV and precursors in action

8. EIVS AND PRECURSORS ON LAND, ON-ROAD

  • 8.1. Stella Lux passenger car Netherlands
  • 8.2. Sunswift eVe passenger car Australia
  • 8.3. Immortus passenger car Australia
  • 8.4. POLYMODEL micro EV Italy
  • 8.5. Venturi Eclectic passenger car Italy
  • 8.6. Dalian tourist bus China
  • 8.7. NFH-H microbus China
  • 8.8. Kayoola large bus Uganda
  • 8.9. Cargo Trike micro EV UK
  • 8.10. Sunnyclist Greece
  • 8.11. Hanergy China
  • 8.12. Sion by Sono Motors Germany
  • 8.13. Funding for development of lightweight solar modules on vehicles

9. SOLAR RACERS

  • 9.1. World Solar Challenge
  • 9.2. Other solar races
  • 9.3. Solar racer technologies - non solar parts
  • 9.4. Improvement of solar racer performance parameters
  • 9.5. Solar racer technologies - photovoltaics
  • 9.6. Power of One solar racer car Canada
  • 9.7. Bethany solar racer UK
  • 9.8. CUER Resolution solar racer UK
  • 9.9. EVA solar racer UK
  • 9.10. Nuna 7 solar racer Netherlands
  • 9.11. Nuna 8 solar racer Netherlands
  • 9.12. Drifter 2.0 solar racer USA

10. EIVS AND PRECURSORS ON LAND, OFF-ROAD

  • 10.1. Vinerobot micro EV Europe

11. EIVS AND PRECURSORS ON WATER SEAGOING

  • 11.1. REPSAIL boat Poland, Turkey etc
  • 11.2. MARS boat UK
  • 11.3. RENSEA boat Iceland, Norway, Sweden
  • 11.4. Turanor boat Germany
  • 11.5. Vaka Moana boat Netherlands
  • 11.6. Sun21 boat Switzerland
  • 11.7. Seaswarm boat USA
  • 11.8. SOELCAT boat Netherlands
  • 11.9. Inerjy EcoVert
  • 11.10. SeaCharger autonomous solar boat

12. EIVS AND PRECURSORS SEAGOING UNDERWATER

  • 12.1. Seaglider AUV boat USA
  • 12.2. Cyro AUV jellyfish USA

13. EIVS AND PRECURSORS INLAND WATER

  • 13.1. Solar racing boats Netherlands
  • 13.2. Loon boat Canada
  • 13.3. EIV or similar - boat Alster Sun Netherlands

14. EIVS AND PRECURSORS AIRBORNE INFLATABLE

  • 14.1. Nephelios airship France
  • 14.2. Northrop Grumman airship USA
  • 14.3. Mitre DARPA airship USA
  • 14.4. HALE-D airship USA
  • 14.5. Dirisolar airship France
  • 14.6. Turtle airship USA
  • 14.7. Solar Ship inflatable fixed wing aircraft Canada
  • 14.8. Atlantik Solar 2 UAV Switzerland
  • 14.9. Zephyr 7 UAV UK, Germany
  • 14.10. Titan Aerospace UAV USA
  • 14.11. Solar Eagle UAV USA
  • 14.12. FCL UAV USA, UK
  • 14.13. Silent Falcon UAV USA
  • 14.14. Helios UAV USA
  • 14.15. Sunstar USA
  • 14.16. Sunseeker Duo USA
  • 14.17. Solar Impulse Switzerland

15. EIV TECHNOLOGY SPAWNS ADVANCES FOR ALL VEHICLES

  • 15.1. Energy independent vehicles: here come the benefits
Back to Top