株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

エネルギー自立型ビークル (EIV) の世界市場:2016-2026年

Energy Independent Vehicles 2016-2026

発行 IDTechEx Ltd. 商品コード 339418
出版日 ページ情報 英文 168 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=115.18円で換算しております。
Back to Top
エネルギー自立型ビークル (EIV) の世界市場:2016-2026年 Energy Independent Vehicles 2016-2026
出版日: 2015年09月10日 ページ情報: 英文 168 Pages
概要

エネルギー自立型ビークル (EIV) は、十分な太陽光を取り込むことによって、プラグに差し込む、あるいは燃料を補給する必要がありません。すでにそのような観光バス、ボート、もしくはゴルフカーが存在しています。今後、太陽光から得られた電気エネルギーで稼働する船舶および航空機がますます増えてきます。それらの技術がさらに発展すれば、それらは遠隔地域および第三世界において、計り知れないほど重要なものとなります。また、監視・検査を目的とした、エネルギー自立型の飛行船、固定翼機および水中船なども開発されています。世界のエネルギー自立型ビークル (EIV) 市場は、2026年には5,000億米ドルの規模に達し、その後も堅調に拡大することが予測されています。

当レポートは、世界のエネルギー自立型ビークル (EIV) 市場を取り上げ、高出力エネルギーハーベスティング (環境発電) 関連動向とエネルギーハーベスティング諸技術を概括し、市場の概要、見通し、動向をまとめて、市場予測を提示するとともに、主要な陸・海・空のエネルギー自立型ビークル (EIV) を紹介しています。

第1章 エグゼクティブサマリー・総括

  • EV (電気自動車) の終焉:高出力エネルギーハーベスティング (環境発電)
  • EAV (エネルギー自立型車両) の種類
  • スピードまたはその他の機能の追求
  • 技術
    • マルチモードエネルギーハーベスティング
  • 市場の潜在力

第2章 イントロダクション

  • エネルギーハーベスティングが中央の舞台に
  • オフグリッドのエネルギーハーベスティングがマイクロワットからメガワット単位に
  • 大きな枠組みにおける高出力エネルギーハーベスティング
  • エネルギー自立型ビークルへの進化
  • 完全なエネルギー自立型ビークル

第3章 高出力エネルギーハーベスティング (HPEH) 技術、市場・将来

  • HPEH技術
  • 技術の比較
    • パラメトリック
    • システム設計:トランスデューサー (変換器) 、出力調整、エネルギー貯蔵
  • 成熟技術
    • 風力タービン、ロータリーブレード (回転刃)
    • 従来型太陽発電
    • 回生制動
  • オフグリッド波ハーベスティング
  • 状況に応じたHPEH:再生可能エネルギー27%に向けたIRENAのロードマップ
  • 電気自動車の終焉:無料のノンストップ道路の旅
  • 定義と特徴
  • 市場概要
  • 市場の成熟度、用途別
  • エネルギーハーベスティングアプリケーションの双曲線
  • EH (エネルギーハーベスティング) システム
  • 多重エネルギーハーベスティング
  • 市場予測
  • 技術スケジュール
  • 詳細技術分野の予測
    • 電気力学
    • 太陽光発電
    • 熱電
    • 地域差異
  • 太陽光発電
  • Powerweaveのハーベスティングと貯蔵e-fiber/e-textile

第4章 地上のエネルギー自立型ビークル

  • Dalian観光車両 (中国)
  • IFEVS microcar (イタリア)
  • Immortus車両 (オーストラリア)
  • NFH-Hマイクロバス (中国)
  • 世界中のソーラーレーシングカー
  • Venturi電気自動車 (フランス)
  • ineRobot (欧州)

第5章 エネルギー自立型ボート・船舶

  • Loon平底船 (カナダ)
  • MARS Shuttleworthモーターヨット (英国)
  • Milper Propeller Technologiesモーターヨット (トルコ)
  • Rensea MARINAモーターヨット (欧州)
  • Seaswarm油膜収集ロボット (米国)
  • SoelCatモーターボート (オランダ)
  • SolarLab観光ボート (ドイツ)
  • Sun 21ソーラーボート
  • Turanor Planet Solar (ドイツ)
  • Vaka Moanaモーターヨット (オランダ)
  • Case Western Reserve Universityペロブスカイト太陽光発電
  • 波・太陽光発電シーグライダー
    • Virginia Institute of Marine Science (米国)
    • Falmouth Scientific Inc. (米国)
    • Liquid Robotics (米国)
    • US Naval Undersea Warfare Center

第6章 エネルギー自立型航空機

  • Dirisolar飛行船 (フランス)
  • ETHZ UAV (スイス)
  • ISIS飛行船 (米国)
  • Lockheed Martin飛行船 (米国)
  • NASA Helois (米国)
  • Northrop Grumman飛行船 (米国)
  • Projet Sol'r Nepheleos (フランス)
  • Solar Flight (米国)
  • Solar Impulse (スイス)
  • Solar Ship空気注入式航空機 (カナダ)
  • Sunrise Solar飛行船 (トルコ)
  • Turtle Airships (スペイン)

第7章 インタビュー・プレゼンテーション

  • CargoTrike (英国)

IDTECHEXの調査レポート・コンサルティング

図表

目次

Energy-autonomous, self-sufficient, electric land vehicles, boats, ships and aircraft propelled entirely by on-board conversion of wind, sun, waves, other ambient energy.

Only up to date report on the full picture focussing on technology and commercial prospects.

You can already buy a tourist bus or boat or golf car that never plugs in or refuels because it captures enough sunshine. Buy an autonomous underwater vehicle that surfaces to recharge its batteries with sunshine and sometimes wave power. See ships and planes circumnavigating the world electrically on sunshine alone. Buy an electric plane with a propeller that goes backwards when it rides thermals to charge the battery. Buy a boat that has a thrust propeller that does the same when under sail or moored in a tidestream.

Electric energy independent vehicles (EIVs) are going to be of immense importance even in remote communities and the third world as they become much more capable. Energy independent airships, fixed wing planes and underwater vessels are being designed for surveillance and inspection.

A multi-billion dollar industry is awaiting those involved in boats, ships, aircraft, land vehicles and energy harvesting. The electric vehicle business is forecasted by IDTechEx to be around $500 billion in 2026, rising strongly thereafter.

In this 164 page report, with 119 figures and tables, the electric vehicle market addressable by energy independence technology is forecasted in 45 categories. And EIVs, often the end game, will be an increasingly significant part of it. 33 energy independent vehicle projects by land, on-water, underwater and in the air are analysed after a thorough grounding in the technologies. How those technologies will progress is given particular attention - from multi-mode harvesting to structural electronics where the structure doubles as supercapacitor, battery and so on. Achievements and potential are presented in easily understood form. The basis is almost entirely research in 2015 from intensive global travel, interviews and analysis by PhD level experts. Latest conference material and presentations from across the world are shown.

Speed range of EIVs in this report.
Actual operating vehicles in green, planned in red.

                        Source IDTechEx

Land and water vehicles are pushing for higher speeds but the aircraft have got there and are now seeking other things, sometimes at slower speed. The other things include carrying more people and cargo and going further. The arrows show the trend in speed of next generation vs today's EIVs.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. End game with EVs: high power energy harvesting
  • 1.2. Types of EAV
  • 1.3. Chasing speed or other capability
  • 1.4. Technologies
    • 1.4.1. Multi-mode Energy Harvesting
  • 1.5. Market potential

2. INTRODUCTION

  • 2.1. Energy harvesting comes center stage
  • 2.2. Energy Harvesting Microwatts to Megawatts Off-Grid.
  • 2.3. High power energy harvesting in the big picture
  • 2.4. Progression to energy independent vehicles
    • 2.4.1. SolarWorld e-One Germany
    • 2.4.2. Solar Flight Sunseeker Duo USA
  • 2.5. Fully energy -independent vehicles

3. HIGH POWER ENERGY HARVESTING TECHNOLOGY, MARKET AND FUTURE

  • 3.1. HPEH Technology
  • 3.2. Technologies compared
    • 3.2.1. Parametric
    • 3.2.2. System design: transducer, power conditioning, energy storage
  • 3.3. Mature technologies
    • 3.3.1. Wind turbines, rotary blade
    • 3.3.2. Conventional photovoltaics
    • 3.3.3. Regenerative braking
  • 3.4. Off-grid wave harvesting
    • 3.4.1. Introduction
    • 3.4.2. CorPower Ocean Sweden
    • 3.4.3. Levant Power USA
    • 3.4.4. National Agency for New Energy Technologies (ENEA) Italy
    • 3.4.5. Oscilla Power USA magnetorestrictive
  • 3.5. HPEH in context: IRENA Roadmap to 27% Renewable
  • 3.6. Electric vehicle end game: free non-stop road travel
  • 3.7. Definition and characteristics
    • 3.7.1. Definition
    • 3.7.2. Overview of need
    • 3.7.3. Characteristics
  • 3.8. Market overview
    • 3.8.1. Largest value market by power
  • 3.9. Maturity of market by application
  • 3.10. Hype curve for energy harvesting applications
  • 3.11. EH systems
  • 3.12. Multiple energy harvesting
  • 3.13. Market forecast 2016-2026
    • 3.13.1. The big picture
    • 3.13.2. Forecasts by technology
    • 3.13.3. Overall market for transducers
    • 3.13.4. Market for power conditioning
  • 3.14. Technology timeline 2016-2025
  • 3.15. Detailed technology sector forecasts 2015-2025
    • 3.15.1. Electrodynamic
    • 3.15.2. Photovoltaic
    • 3.15.3. Thermoelectrics
    • 3.15.4. Territorial differences
  • 3.16. Photovoltaic
    • 3.16.1. Flexible, conformal, transparent, UV, IR
    • 3.16.2. Technological options
    • 3.16.3. Principles of operation
    • 3.16.4. Options for flexible PV
    • 3.16.5. Many types of photovoltaics needed for harvesting
    • 3.16.6. Spray on power for electric vehicles and more
  • 3.17. Powerweave harvesting and storage e-fiber/ e-textile

4. ENERGY AUTONOMOUS VEHICLES ON LAND

  • 4.1. Dalian sightseeing car China
  • 4.2. IFEVS microcar Italy
  • 4.3. Immortus car Australia
  • 4.4. NFH-H microbus China
  • 4.5. Solar racing cars worldwide
  • 4.6. Venturi Eclectic car France
  • 4.7. VineRobot Europe

5. ENERGY AUTONOMOUS BOATS AND SHIPS

  • 5.1. Loon pontoon boat Canada
  • 5.2. MARS Shuttleworth motor yacht, UK
  • 5.3. Milper Propeller Technologies Motor yacht, Turkey
  • 5.4. Rensea MARINA motor yacht Europe
  • 5.5. Seaswarm oil slick gathering robot, USA
  • 5.6. SoelCat motor boat Netherlands
  • 5.7. SolarLab tourist boats Germany
  • 5.8. Sun 21 Solar Boat
  • 5.9. Turanor Planet Solar Germany
  • 5.10. Vaka Moana motor yacht Netherlands
  • 5.11. Case Western Reserve University perovskite photovoltaics
  • 5.12. Wave and sun powered sea gliders
    • 5.12.1. Virginia Institute of Marine Science USA
    • 5.12.2. Falmouth Scientific Inc. USA
    • 5.12.3. Liquid Robotics USA
    • 5.12.4. US Naval Undersea Warfare Center

6. ENERGY INDEPENDENT AIRCRAFT

  • 6.1. Dirisolar airship France
  • 6.2. ETHZ UAV Switzerland
  • 6.3. ISIS airship USA
  • 6.4. Lockheed Martin airship USA
  • 6.5. NASA Helois USA
  • 6.6. Northrop Grumman airship USA
  • 6.7. Projet Sol'r Nepheleos France
  • 6.8. Solar Flight USA
  • 6.9. Solar Impulse Switzerland
  • 6.10. Solar Ship inflatable aircraft Canada
  • 6.11. Sunrise Solar airship Turkey
  • 6.12. Turtle Airships Spain

7. INTERVIEWS AND PRESENTATIONS 2015: EXAMPLES

  • 7.1. CargoTrike UK

IDTECHEX RESEARCH REPORTS AND CONSULTANCY

TABLES

  • 1.1. Energy autonomous vehicle types
  • 1.2. Speed range of EAVs in this report. Actual operating vehicles in green, planned in red.
  • 1.3. Numbers of electric vehicles, in thousands, sold globally, 2016-2026, by applicational sector
  • 1.4. Ex-factory unit price of EVs, in thousands of US dollars, sold globally, 2016-2026, by applicational sector, rounded
  • 1.5. Ex-factory value of EVs, in billions of US dollars, sold globally, 2016-2026, by applicational sector, rounded
  • 3.1. Maturity of HPEH technologies in adoption and development not age. Off-grid only with electricity used where made.
  • 3.2. Power density provided by different forms of high power energy harvesting. Best volumetric and gravimetric energy density.
  • 3.3. Some classical applications with the type of transducer and energy storage typically chosen
  • 3.4. Examples of uses of HPEH expressed as duration of harvesting available with examples of companies using or developing these applications
  • 3.5. Comparison of desirable features of the EH technologies. Good in red. Others are poor or not yet clarified.
  • 3.6. Typical transducer power range of the main technical options for HPEH transducer arrays - electrodynamic, photovoltaic and thermoelectric - and some less important ones shown in grey
  • 3.7. Potential for improving energy harvesting efficiency
  • 3.8. Typical power needs increasingly addressed by high power energy harvesting
  • 3.9. Power end game 2026 with winners shown in green. Areas with some activity but not dominant are shown clear
  • 3.10. Power density provided by different forms of HPEH with exceptionally useful superlatives in yellow. Other parameters are optimal at different levels depending on system design.
  • 3.11. Good features and challenges of the four most important EH technologies in order of importance
  • 3.12. Proliferation of electrodynamic harvesting options
  • 3.13. Global market for energy harvesting transducers at all power levels (units million) 2015-2026 rounded
  • 3.14. Global market for energy harvesting transducers at all power levels (unit price dollars) 2015-2026
  • 3.15. Global value market for energy harvesting transducers at all power levels (market value billion dollars) 2015-2026 rounded
  • 3.16. Main contributors to EH transducer sales 2015-2026. The technologies supplied by many large companies taking substantial orders are highlighted in orange.
  • 3.17. Timeline 2016-2025 with those advances most greatly impacting market size shown in yellow.
  • 3.18. Electrodynamics for Energy Harvesting units millions 2015-2025, dominant numbers in 2025 in yellow.
  • 3.19. Electrodynamic EH for regenerative braking in electric vehicles 2015-2025 number thousand
  • 3.20. Electrodynamic EH for regenerative braking in electric vehicles 2015-2025 notional unit value dollars given that these motors and generators double as other functions
  • 3.21. Notional total market value for electrodynamic EH for regenerative braking in electric vehicles 2015-2025 $ billion rounded
  • 3.22. Electrodynamic harvesting alternators in conventional internal combustion engined vehicles, number, notional unit value $ and value market $ billion 2015-2025
  • 3.23. Electrodynamic harvesting Other, mainly energy harvesting shock absorbers, number, notional unit value $ and value market $ billion 2015-2025
  • 3.24. Photovoltaics for Energy Harvesting MW peak million 2015-2025
  • 3.25. Thermoelectrics for Energy Harvesting units thousand 2015-2025
  • 3.26. Thermoelectrics for Energy Harvesting units value dollars 2015-2025
  • 3.27. Thermoelectrics for Energy Harvesting total value thousands of dollars 2015-2025
  • 3.28. Some highlights of global effort on energy harvesting
  • 3.29. Comparison of pn junction and photoelectrochemical photovoltaics
  • 3.30. The main options for photovoltaics beyond conventional silicon compared

FIGURES

  • 1.1. Progression from conventional vehicles to self-powered electric vehicles.
  • 1.2. Numbers of electric vehicles, in thousands, sold globally, 2016-2026, by applicational sector
  • 1.3. Ex-factory unit price of EVs, in thousands of US dollars, sold globally, 2016-2026, by applicational sector, rounded
  • 1.4. Ex-factory value of EVs, in billions of US dollars, sold globally, 2016-2026, by applicational sector, rounded
  • 2.1. Choices of range extender for hybrid electric vehicles compared with energy storage options and energy harvesting
  • 2.2. Sunseeker Duo
  • 2.3. Turanor and Solar Impulse
  • 3.1. The performance of the favourite energy harvesting technologies. Technologies with no moving parts are shown in red. Thermoelectric not so good when it needs fins or water cooling.
  • 3.2. Typical energy harvesting system
  • 3.3. Simplest scheme for vehicle regenerative braking
  • 3.4. Nissan Lithium-ion forklift with regenerative braking
  • 3.5. Mazda supercapacitor-based energy harvesting from reversing alternator during coasting and braking in a conventional car
  • 3.6. Regen braking research
  • 3.7. Energy harvesting from Levant Power
  • 3.8. Pendulum Wave Energy Converter (PEWEC)
  • 3.9. Triton
  • 3.10. Annual share of annual variable renewable power generation on-grid and off-grid 2014 and 2030 if all Remap options are implemented
  • 3.11. Examples of photovoltaics providing total power requirements of a vehicle, including motive power
  • 3.12. Examples of applications being developed 10W-100kW
  • 3.13. Technology focus of 200 organisations developing the different leading energy harvesting technologies
  • 3.14. Maturity of different forms of energy harvesting
  • 3.15. Hype curve snapshot for high power energy harvesting applications in 2015-6
  • 3.16. Hype curve snapshot for high power energy harvesting applications in 2026
  • 3.17. Hype curve for HPEH technology 2016
  • 3.18. Hype curve for HPEH technology 2026
  • 3.19. Institutions involved in airborne wind energy in 2015
  • 3.20. Proliferation of actual and potential energy harvesting in land vehicles
  • 3.21. Proliferation of actual and potential energy harvesting in marine vehicles
  • 3.22. Proliferation of actual and potential energy harvesting in airborne vehicles
  • 3.23. EH system diagram
  • 3.24. Multiple energy harvesting
  • 3.25. HPP structure
  • 3.26. HPP envisaged application in buildings
  • 3.27. Envisaged marine application of HPP
  • 3.28. HPEH including battery systems related to other off-grid and to on-grid harvesting market values in 2016
  • 3.29. Global installed renewable energy GW cumulative, off-grid and on-grid by source
  • 3.30. Global market for energy harvesting transducers at all power levels (units million) 2015-2026 rounded
  • 3.31. Global market for energy harvesting transducers at all power levels (unit price dollars) 2015-2026
  • 3.32. Global value market for energy harvesting transducers at all power levels (market value billion dollars) 2015-2026 rounded
  • 3.33. Energy harvesting organisations by continent
  • 3.34. Organisations active in energy harvesting by country, numbers rounded
  • 3.35. Kopf Solarshiff pure electric solar powered lake boats in Germany and the UK for up to 150 people
  • 3.36. NREL adjudication of efficiencies under standard conditions
  • 3.37. Powerweave
  • 4.1. Dalian golf car
  • 4.2. IFEVS energy autonomous microcars
  • 4.3. Immortus solar sports car
  • 4.4. NFH-H golf car
  • 4.5. Examples of solar racing cars
  • 4.6. Venturi Eclectic
  • 4.7. VineRobot work program
  • 5.1. Loon
  • 5.2. MARS
  • 5.3. Milper and the REP-SAIL project.
  • 5.4. Rensea MARINA
  • 5.5. Seaswarm
  • 5.6. SoelCat
  • 5.7. Alster Sun Hamburg Solar Shuttle
  • 5.8. Constance Solar Shuttle
  • 5.9. Turanor fact sheet
  • 5.10. Turanor construction process
  • 5.11. Vaka Moana
  • 5.12. Wave and sun power recharging a glider AUV before it resumes its mission
  • 5.13. Wave and sun powered sea glider
  • 5.14. Autonomous wave glider
  • 5.15. PACX Wave Glider
  • 5.16. Large autonomous robot jellyfish
  • 6.1. Dirisolar
  • 6.2. AtlantikSolar2
  • 6.3. ISIS concept
  • 6.4. Lockheed HALE-D
  • 6.5. Helios
  • 6.6. Solar surveillance airship ordered by the US military
  • 6.7. Nepheleos
  • 6.8. Sunstar
  • 6.9. Solar Impulse compared to jumbo jet
  • 6.10. Ghost pictures of Solar Impulse 2
  • 6.11. Round the world route
  • 6.12. Flight to Hawaii
  • 6.13. Solar Ship
  • 6.14. Operating principle
  • 6.15. Turtle airship concept
  • 7.1. Energy harvesting considered and rejected for autonomous short sea ship except possibly wave
  • 7.2. CargoTrike with 300W EIV with solar panel on top
Back to Top