株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

ハプティクス (触感フィードバック) 2017 - 2027年:技術・市場・参入企業

Haptics 2017-2027: Technologies, Markets and Players

発行 IDTechEx Ltd. 商品コード 339350
出版日 ページ情報 英文 228 Slides
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=114.42円で換算しております。
Back to Top
ハプティクス (触感フィードバック) 2017 - 2027年:技術・市場・参入企業 Haptics 2017-2027: Technologies, Markets and Players
出版日: 2017年07月31日 ページ情報: 英文 228 Slides
概要

ハプティクス産業の市場規模は、2027年までに28億米ドルの規模に達する見込みです。

当レポートは、ハプティクス (触感フィードバック) 技術市場を取り上げ、現在の主流である偏心モーター (ERM) 、リニアバイブレーター (LRA) 、ピエゾ (圧電) 素子と、圧電性高分子、静電摩擦 (ESF) 、超音波振動 (USV) 等の主要技術を解説し、市場概要およびハプティクスのバリューチェーンを調査分析するとともに、市場予測を提示し、主要な企業の概要をまとめています。

第1章 イントロダクション

第2章 ハプティクス技術

  • 対象ハプティクスの種類
  • ハプティクス (触覚フィードバック) の技術ベンチマーキング
  • 技術即応度・導入

第3章 偏心モーター (ERM)

  • ERM構造
  • ERMの促進因子
  • ERMによる技術フロンティア
  • SWOT分析:ERMモーター

第4章 リニアバイブレーター (LRA)

  • LRAの構造
  • Appleのハプティクスエンジン
  • 典型的なLRAスペック
  • SWOT:LRA
  • ERMモーターおよびLRAサプライヤー
  • ERMモーターおよびLRAサプライヤー
  • ERMおよびLRAサプライヤーの実例
  • 元リーダーにとって試練の時

第5章 ピエゾ (圧電) 素子

  • 背景・定義
  • 圧電ハプティクスアクチュエーター
  • 圧電アクチュエーターのマテリアル
  • デバイス統合
  • 統合による課題:耐久性
  • 圧電複合材料も選択肢
  • センサー - アクチュエーターシステムと圧電の連動
  • 圧電アクチュエーターのバリューチェーン
  • SWOT:圧電セラミックス

第6章 電気活性高分子 (EAP)

  • 電気活性高分子 (EAP) の種類
  • EAPの物理的特徴の比較
  • 誘電エラストマー (DEA)
  • セラミックスおよびSMAとDEAの比較
  • ハプティクスアクチュエーターとしての誘電エラストマー
  • 人工筋肉に何が起こったか?
  • SWOT:誘電エラストマー
  • 圧電性高分子
  • 背景・定義:圧電定数
  • なぜ高分子を使うのか?
  • ハプティクスアクチュエーター向けPVDV系高分子の選択肢
  • 高分子ハプティクスによるデモ製品
  • SWOT:圧電性高分子

第7章 形状記憶合金 (SMA)

  • 形状記憶合金のイントロダクション
  • 従来のハプティクスアクチュエーターとしてのSMAの採用
  • SMAハプティクス:いくつかのメリット
  • SWOT:SMA

第8章 ディスプレイハプティクス:可変摩擦向けアクチュエーター

  • 静電摩擦 (ESF)
  • O-Film によるSensegの買収
  • SWOT:静電摩擦
  • 超音波振動 (USV)
  • SWOT:超音波振動
  • 屈曲波ハプティクス
  • 屈曲波ハプティクスフィードバック
  • SWOT:屈曲波
  • 触知せん断ハプティクス
  • 触知せん断フィードバック
  • 可変摩擦ディスプレイ向けせん断力
  • マイクロ流体表面張力ハプティクス
  • マイクロ流体:Tactus Technology

第9章 非接触ハプティクス

  • 背景
  • 用途・促進因子
  • 超音波
  • 非接触ハプティクスの技術比較
  • 自動車向け非接触ハプティクス
  • 製品化

第10章 市場

  • 消費者エレクトロニクス:携帯電話
  • ゲーム
  • 消費者エレクトロニクス:タブレット
  • 消費者エレクトロニクス:ウェアラブル
  • 消費者エレクトロニクス:その他
  • 自動車
  • 医療
  • 家庭用電化製品、業務用およびその他の用途

第11章 ケーススタディ:VR向けハプティクス

第12章 関連トピック

第13章 イベントレポート:CES 2017 におけるハプティクス

第14章 市場予測・議論

  • 予測詳細・前提条件
  • ハプティクス収益:技術別
  • 新たなハプティクス収益:技術別
  • ハプティクス規模 (数量ベース) :技術別
  • 新興ハプティクスの規模 (数量ベース) :技術別
  • ハプティクス収益:市場部門別
  • ハプティクス数量:市場部門別

第15章 ハプティクスのバリューチェーン

第16章 企業プロファイル

  • インタビューに基づいた企業プロファイル
    • Aito
    • Arkema (Piezotech)
    • Artificial Muscle Inc. (part of Parker Hannifin)
    • General Vibration
    • HAP2U
    • Immersion Corporation
    • Nidec Motor Corporation
    • Novasentis
    • Precision Microdrives
    • Quad Industries
    • Redux ST
    • Solvay
    • Tactus Technologies
    • Tangio Printed Electronics
    • Ultrahaptics Ltd.
  • バックグラウンド企業プロファイル
    • AAC Technologies
    • Bluecom Co. Ltd.
    • Jahwa Electronics
    • KOTL - Jinlong Machinery
    • LG Innotek
    • SEMCO

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

Haptics are key technologies found as an essential feature enhancing the user experience in many very familiar products today. Whether as notification provision in a vibrating smartphone, tension building in a video game controller, or input confirmation in an industrial scanner, haptics technologies have now reached billions of electronics devices. The report finds that the haptics industry will be worth $2.8bn by 2027.

The changing application landscape

After many years of deployment in devices such as games console controllers, the largest success for the haptics market in terms of volume has been their ubiquitous adoption in smartphones. However, as this market has become increasingly commoditised, players have become increasingly desperate to drive change, either within the core technologies or in the markets generating revenue for haptics.

The most attractive market to emerge for haptics has been virtual reality. The first widespread commercially viable VR platforms hit mainstream markets in 2016, and haptic feedback is a common and essential feature in many of the handheld controllers incorporate in these systems. Not only this, but haptics is commonly touted as one of the key areas with unmet technology needs, providing fuel to drive new investment for new players with new technologies to serve this future market.

In this report, IDTechEx have detailed an extensive section covering haptics in VR. This has been compiled via primary research over 18 months including visiting events and companies to interview all of the key players. Via these interviews and case studies, the report describes an application and technology roadmap for haptics in VR, as well as quantitative market forecasts detailing the market size today and a scenario for its progression over the next decade.

image1

Haptics technology options

The eccentric rotating mass (ERM) motor has been the cheap, robust and very effective incumbent technology in haptics for the best part of two decades. However, changes at the core of the market have seen increasing adoption over linear resonant actuators (LRAs) in key products, by key players in key verticals.

However, the technology landscape is much more diverse than these incumbents. In this report, IDTechEx list all of the significant emerging haptic technologies being developed and commercialised today to enter the market in the coming decade. This includes technologies like voice coils or piezoceramics, which are not new but have not reached the mainstream like either ERM motors or LRAs.

There is also a large selection of emerging technologies, each with exciting properties that could potentially help to carve out specific niches within the competitive haptics market. These include actuators based on new materials like piezoelectric polymers, other electroactive polymers (EAPs) and shape memory alloys (SMAs). It also covers surface haptics including electrostatic (ESF), ultrasonic (USV) and even microfluidic solutions. The report also discusses contactless haptics, including prominent ultrasonic options but also various other emerging techniques to provide haptic feedback at a distance.

image2

The competitive landscape

As changes are driven in both technologies and applications, it is most important to understand the dynamics, opinions and progress of all of the players involved. The report from IDTechEx mentions 120 different players in the haptics value chain, including materials suppliers, haptics component manufactures, technology developers, companies in the IP landscape, key integrators and manufacturers, right through to case studies from various end users by industry vertical.

The bulk of the research has been conducted through primary interviews, conducted in person on site visits or at events, or by telephone with key personnel at leading players. The report contains 22 full interview-based profiles, plus primary content from around 40 players from the haptics value chain.

As the industry develops, report customers can use the 30 minutes of analyst access to get the latest updates as IDTechEx's analysts continue to cover the space, with new interviews, event visits and case studies.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. INTRODUCTION

  • 1.1. What are haptics?
  • 1.2. Two sides to the industry: Tactile and kinaesthetic
  • 1.3. Characterisation within this report
  • 1.4. Haptic Technologies: A brief overview
  • 1.5. How the sense of touch works
  • 1.6. The potential value-adds from haptic feedback
  • 1.7. Potential vs actual use of haptics
  • 1.8. The old status quo: ERMs dominate
  • 1.9. ERM motors are a difficult incumbent to replace
  • 1.10. Recent changes: LRAs gain market share
  • 1.11. The incumbents dominate for the foreseeable future
  • 1.12. New markets provide the greatest opportunities
  • 1.13. Emerging haptics find their niches
  • 1.14. Quantifying the potential opportunity

2. HAPTICS TECHNOLOGIES

  • 2.1. Types of Haptics Covered
  • 2.2. Technology Benchmarking for Haptic Feedback
  • 2.3. Technology Readiness and Adoption

3. ECCENTRIC ROTATING MASS (ERM) MOTORS

  • 3.1. ERM Structure
  • 3.2. ERM Drivers
  • 3.3. Technology frontiers with ERMs
  • 3.4. SWOT Analysis - ERM Motors

4. LINEAR RESONANT ACTUATORS (LRAS)

  • 4.1. LRA Structure
  • 4.2. LRA Structure
  • 4.3. Apple's Taptic Engine
  • 4.4. Typical LRA specs
  • 4.5. SWOT: Linear Resonant Actuators (LRAs)
  • 4.6. ERM motor and LRA suppliers
  • 4.7. Examples of ERM & LRA Suppliers
  • 4.8. Examples of ERM & LRA Suppliers
  • 4.9. Challenging times for previous leaders

5. PIEZOELECTRIC ACTUATORS

  • 5.1. Background and Definitions
  • 5.2. Piezoelectric Haptic Actuators
  • 5.3. Piezoelectric Actuator Materials
  • 5.4. Device Integration
  • 5.5. Challenges with integration: Durability
  • 5.6. Piezoelectric composites are also an option
  • 5.7. Coupled sensor-actuator systems with piezoelectrics
  • 5.8. Value chain for piezoelectric actuators
  • 5.9. SWOT: Piezoelectric Ceramics

6. ELECTROACTIVE POLYMERS (EAPS)

  • 6.1. Types of electroactive polymer (EAP)
  • 6.2. Types of electroactive polymer (continued)
  • 6.3. Comparing physical properties of EAPs
  • 6.4. Dielectric elastomers (DEAs)
  • 6.5. Comparing DEAs with Ceramics and SMAs
  • 6.6. Dielectric elastomers as haptic actuators
  • 6.7. What happened to Artificial Muscle?
  • 6.8. SWOT: Dielectric elastomers
  • 6.9. Piezoelectric Polymers
  • 6.10. Background and Definitions: Piezoelectric constants
  • 6.11. Why use a polymer? - Materials Choices
  • 6.12. PVDF-based polymer options for haptic actuators
  • 6.13. Demonstrator product with polymer haptics
  • 6.14. SWOT: Piezoelectric polymers

7. SHAPE MEMORY ALLOYS (SMAS)

  • 7.1. Introduction to shape memory alloys
  • 7.2. Deploying SMA as conventional haptic actuators
  • 7.3. SMA haptics: some metrics
  • 7.4. SWOT: SMAs

8. DISPLAY HAPTICS - ACTUATORS FOR VARIABLE FRICTION

  • 8.1. Electrostatic Friction (ESF)
  • 8.2. Electrostatic Friction (ESF)
  • 8.3. O-Film's acquisition of Senseg
  • 8.4. SWOT: Electrostatic Friction
  • 8.5. Ultrasonic Vibration (USV)
  • 8.6. Ultrasonic Vibration (USV)
  • 8.7. SWOT: Ultrasonic vibration
  • 8.8. Bending wave haptics
  • 8.9. Bending wave haptic feedback
  • 8.10. SWOT: Bending wave
  • 8.11. Tactile shear haptics
  • 8.12. Tactile Shear Feedback
  • 8.13. Shear forces for variable friction displays
  • 8.14. Microfluidic surface haptics
  • 8.15. Microfluidics: Tactus Technology

9. CONTACTLESS HAPTICS

  • 9.1. Background
  • 9.2. Applications and Drivers
  • 9.3. Ultrasonic
  • 9.4. Air Vortex
  • 9.5. Technology comparison for contactless haptics
  • 9.6. Contactless haptics for automotive: Bosch and Ultrahaptics at CES 2017
  • 9.7. The commercial reality

10. MARKETS

  • 10.1. Consumer Electronics: Mobile Phones
  • 10.2. Gaming
  • 10.3. Consumer Electronics: Tablets
  • 10.4. Consumer Electronics: Wearables
  • 10.5. Consumer Electronics: Others
  • 10.6. Automotive
  • 10.7. Medical
  • 10.8. Home appliance, commercial and other uses

11. CASE STUDY: HAPTICS FOR VR

  • 11.1. Stimulating the senses: Sight, sound, touch and beyond
  • 11.2. Haptics in mainstream VR today
  • 11.3. Categories for the technology today
  • 11.4. Haptics in controllers: inertial and surface actuation
  • 11.5. Example: Surface actuation on a controller
  • 11.6. Motion simulators and vehicles: established platforms
  • 11.7. New motion simulators are still used to show off VR
  • 11.8. Examples: personal VR motion simulators and vehicles
  • 11.9. Wearable haptic interfaces
  • 11.10. Wearable haptic interfaces - rings
  • 11.11. Commercial examples: GoTouchVR
  • 11.12. Wearable haptic interfaces - gloves
  • 11.13. Examples: Virtuix, NeuroDigital Technologies
  • 11.14. Wearable haptic interfaces - shoes
  • 11.15. Commercial examples: Nidec, CEREVO, and others
  • 11.16. Wearable haptic interfaces - harnesses and apparel
  • 11.17. Wearable haptic interfaces - exoskeletons
  • 11.18. Commercial examples: Dexta Robotics
  • 11.19. Kinaesthetic haptics
  • 11.20. Kinaesthetic devices: types and process flow
  • 11.21. Exoskeletons
  • 11.22. Manipulandums
  • 11.23. FundamentalVR - haptics for training surgeons in VR
  • 11.24. Robotics: Hacking existing platforms to build kinaesthetic haptics
  • 11.25. The case for contactless haptics in VR
  • 11.26. Forecast: Haptics in VR & AR by haptic technology

12. RELATED TOPIC: POWER-ASSIST EXOSKELETONS AND APPAREL

  • 12.1. Power assist exoskeletons
  • 12.2. The relationship between assistive devices and kinaesthetic haptics
  • 12.3. Example: Ekso Bionics
  • 12.4. Power assist suits - UPR
  • 12.5. Power assist apparel - Superflex
  • 12.6. Geographical and market trends

13. EVENT REPORT: HAPTICS AT CES 2017

  • 13.1. Nidec: VR haptics application
  • 13.2. Nidec: haptics for automotive
  • 13.3. hap2U
  • 13.4. GoTouchVR
  • 13.5. Contactless haptics for automotive: Bosch and Ultrahaptics

14. MARKET FORECASTS AND DISCUSSION

  • 14.1. Forecast details and assumptions
  • 14.2. Haptics revenue by technology, 2017-2027
  • 14.3. Emerging haptics revenue by technology, 2017-2027
  • 14.4. Haptics volumes by technology, 2017-2027
  • 14.5. Emerging haptics volumes by technology, 2017-2027
  • 14.6. Haptics revenue by market sector, 2017-2027
  • 14.7. Haptics volumes by market sector, 2017-2027

15. THE HAPTICS VALUE CHAIN

  • 15.1. Value chain summary
  • 15.2. Lists of 120 haptics companies (by technology and value chain position)
  • 15.3. List of haptics companies: technology and component manufacturing
  • 15.4. List of haptics companies: Supporting ecosystem
  • 15.5. List of haptics companies: End users

16. 21 COMPANY PROFILES - INCLUDING COMPANIES SUCH AS IMMERSION, NIDEC MOTOR CORPORATION AND ULTRAHAPTICS

Back to Top