株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

ワイヤレス充電 2017-2027年:電話、自動車その他

Wireless Charging 2017-2027: Phones, Cars etc.

発行 IDTechEx Ltd. 商品コード 338054
出版日 ページ情報 英文 185 Pages, 12 Tables, 70 Figures
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=113.24円で換算しております。
Back to Top
ワイヤレス充電 2017-2027年:電話、自動車その他 Wireless Charging 2017-2027: Phones, Cars etc.
出版日: 2017年05月31日 ページ情報: 英文 185 Pages, 12 Tables, 70 Figures
概要

当レポートでは、ワイヤレス充電市場について取り上げ、ポータブルエレクトロニクス・自動車向けのワイヤレス充電、技術、静的充電・動的充電、半動的充電・全動的充電、ロボット充電、およびロボットアームなどについて調査分析しており、市場予測、市場ダイナミクス、および主要企業へのインタビューなどをまとめ、お届けいたします。

第1章 エグゼクティブサマリー・結論

  • 定義・概要
  • ポータブルエレクトロニクス向けワイヤレス充電
  • 2017年の状況
  • テクノロジーロードマップおよび市場予測
  • 技術
  • 静的WC (ワイヤレス充電) の技術オプション
  • 動的充電
  • 市場ダイナミクス
  • その他の比較

第2章 イントロダクション

  • 主要動向
  • 充電式電話と充電式自動車:比較分析
  • 歴史
  • ワイヤレス出力伝達
  • 今のところ、Qiは個人用エレクトロニクス向けの成功仕様
  • AirFuel Alliance
  • AppleとQi
  • ワイヤレス自動車充電
  • 予測
  • NFCモデル
  • 市場のスウィートスポット
  • 脅威
  • 市場予測
  • ハイパワーの予測:電気自動車
  • 市場:地域別

第3章 ポータブルデバイスへのワイヤレス充電

  • 主要動向
  • 紛らわしい用語
  • 課題
  • 本当の問題
  • Qiと主要競合企業の比較
  • EnergousとApple
  • Ossia Cota
  • Wi-Charge
  • WiTricity

第4章 自動車停車時のワイヤレス充電

  • イントロダクション
  • 自動車ワイヤレス充電の規格
  • 近年の活動

第5章 自動車の動的充電

  • イントロダクション
  • 道路の維持管理問題
  • 半動的充電
  • 全動的充電
  • スケジュール
  • 静的環境発電の動的充電の新形態の可能性
  • Witt Energy UK
  • 太陽光による環境発電
  • Powerweaveのハーベスティングおよびストレージ:e-ファイバー/e-テキスタイル
  • 沢山の使い道があるソーラーロード

第6章 自動車向けワイヤレス充電の代替

  • 永久的に充電を必要としない電気自動車
  • ロボット充電
  • ガントリー・カテナリー
  • ロボットアーム
  • エネルギー自立型電気自動車:EIV

第7章 インタビュー例

  • BYD:中国
  • Hevo Power:米国、WAVE:米国、WiTricity:米国
  • Idaho State Laboratory:米国
  • Infineon:米国/ドイツ
  • PowerHydrant:米国
  • Qualcomm:米国
  • 東京大学:日本
  • WiTricity:米国
  • XALT Energy:米国

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

This unique commercially oriented report has 180+ pages packed with detailed market and technical analysis with many new infograms, conference slides, roadmaps and ten year forecasts 2017-2027. It is based on global research by PhD level multi-lingual analysts in 2016-7 with frequent updates. The Executive Summary and Conclusions is insightful, detailed yet easily assimilated. An introduction gives an overview of the background and technologies with a frank assessment of why most manufacturers and analysts have been over-optimistic about the use, though not always the deployment of these systems in the past and the significance for the future of new capabilities such as long range phone charging. Other chapters embrace the different applications, technologies and roadmaps.

The report primarily discusses mobile phone and electric cars charging but showing how much the same arguments apply to many electrical and electronic goods, particularly mobile ones. Most analysts forecasting sales of contactless charging systems for phones and pure electric cars have over-estimated both over the last 15 years. In response to customer demands, may other aspects were being fixed first. People wanted better features and more of them with their phones, larger screens and so on. Electric cars were held back by range anxiety, high up front price, poor resale price and the need to change driver behaviour such as driving more carefully and finding and using charging stations, usually incompatible ones with a profusion of different payment methods and Tesla ones banned to anyone else. These impediments are gradually being overcome so consumer needs relevant to wireless charging come nearer to the top nowadays. Beware though. The report exposes how the charging needs and solutions for phones and the like have important differences from the needs and uses for vehicles and contentiously, it translates this into value sales for electric vehicles overtaking those for phones within the decade.

The report is extremely comprehensive. It looks at the activities of many developers and manufacturers and their potential customers and users. The enthusiasm of suppliers shown in new interviews is tempered by twenty year of experience for IDTechEx and new opinion from key companies such as Ford assessing the technology in 2017. Having recently researched reports on Fuel cell vehicles, energy independent electric vehicles, better batteries, better energy harvesting phones and robot chargers render wireless charging unnecessary. IDTechEx is best placed to provide a balanced view of each because we have researched reports on all these subjects recently. Indeed IDTechEx stages conferences and exhibitions on these aspects and the core topic of wireless charging so the report contains slides and answers from interested parties that are not generally available. This report is no cut and paste from the web but it does contain some forecasts of others for comparison with the new IDTechEx analysis.

The report reveals how mobile phone users do not want contactless charging as such but rather they need ubiquitous charging without carrying a charger around or better still, no loss of use through lack of charge. It contrasts electric vehicles where the act of plugging in in public places can he a physical strain, dirty and dangerous but the environment is more challenging with roads being dug up, animals getting irradiated and ground clearance varying greatly and obscuration a problem. However, the reader can form their opinion based on inputs from all parts of the value chain and from other interested parties. To dig deeper on certain aspects, IDTechEx has many new reports and consultancy services on allied topics such as post-lithium batteries, extreme lightweighting and wearable electronics.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Definition and overview
  • 1.2. Wireless charging for portable electronics
  • 1.3. Situation in 2017
    • 1.3.1. Mobile phones, other portable electronics, electrical goods
    • 1.3.2. Cars and other vehicles
  • 1.4. Technology roadmap and market forecasts 2017-2027
    • 1.4.1. Technology roadmap 2017-2027
    • 1.4.2. Market forecasts electrical, electronic, electric vehicle WC 2017-2027
    • 1.4.3. Developers and manufacturers
    • 1.4.4. Regional trends
    • 1.4.5. Background information from other analysts
    • 1.4.6. Addressable markets
    • 1.4.7. Global smart phone shipments 2006-2021 billions
    • 1.4.8. Electric vehicle forecasts 2017-2027
  • 1.5. Technology
  • 1.6. Technical options for static WC
  • 1.7. Dynamic charging
    • 1.7.1. Honda dynamic charging
  • 1.8. Market dynamics
    • 1.8.1. Market sweet spot
    • 1.8.2. Market dynamics
  • 1.9. Summary of on-road wireless charging situation in 2017

2. INTRODUCTION

  • 2.1. Main trends
  • 2.2. Charging phones vs charging cars: comparison in 2017
    • 2.2.1. Phones
    • 2.2.2. Cars
  • 2.3. History
  • 2.4. Wireless power transfer
    • 2.4.1. Adoption - who wins
  • 2.5. Qi the winning specification for personal electronics - so far
  • 2.6. AirFuel Alliance
  • 2.7. Apple and Qi
  • 2.8. Wireless vehicle charging

3. WIRELESS CHARGING OF PORTABLE ELECTRONIC DEVICES

  • 3.1. Main trends
  • 3.2. Misleading terminology
  • 3.3. Challenges
  • 3.4. Real problems
  • 3.5. Energous and Apple
  • 3.6. Ossia Cota
  • 3.7. Wi-Charge
  • 3.8. WiTricity

4. WIRELESS CHARGING FOR VEHICLES WHEN STATIONARY

  • 4.1. Introduction
  • 4.2. Standards for vehicle WC
  • 4.3. Recent activity
    • 4.3.1. BMW, Germany Nanyang Singapore
    • 4.3.2. Evatran for Tesla, Nissan, Chevrolet
    • 4.3.3. Fraunhofer wireless discharging, lightweighting, dynamic
    • 4.3.4. Hyundai-Kia Korea: Mojo USA
    • 4.3.5. Oak Ridge National Laboratory's 20-kilowatt wireless charging for electric vehicles
    • 4.3.6. PRIMOVE Belgium
    • 4.3.7. Yutong and ZTE China

5. DYNAMIC CHARGING OF VEHICLES

  • 5.1. Introduction
  • 5.2. Road maintenance concerns
  • 5.3. Semi dynamic charging
  • 5.4. Fully dynamic charging
    • 5.4.1. TDK Japan
    • 5.4.2. Drayson Racing UK
    • 5.4.3. Korea Advanced Institute of Science and Technology
    • 5.4.4. University of Tokyo Japan
    • 5.4.5. Utah State University USA
  • 5.5. Timeline
    • 5.5.1. Volvo Sweden
  • 5.6. Potential for new forms of static energy harvesting power dynamic charging
    • 5.6.1. Airborne Wind Energy AWE
    • 5.6.2. Favoured technologies
    • 5.6.3. Billions in Change
    • 5.6.4. EnerKite Germany
    • 5.6.5. Google Makani USA
    • 5.6.6. e-Wind USA
    • 5.6.7. TwingTec Switzerland
    • 5.6.8. Ampyx Power Netherlands
    • 5.6.9. Altaeros USA
    • 5.6.10. Kitemill Norway
    • 5.6.11. Kitegen Italy
    • 5.6.12. Commercialisation targets
    • 5.6.13. IDTechEx assessment
    • 5.6.14. ABB assessment
  • 5.7. Energy harvesting shock absorbers
    • 5.7.1. Linear shock absorbers
    • 5.7.2. Rotary shock absorbers
    • 5.7.3. Tenneco Automotive Operating Company USA
  • 5.8. Witt Energy UK
  • 5.9. Photovoltaic harvesting
    • 5.9.1. Flexible, conformal, transparent, UV, IR
    • 5.9.2. Technological options
    • 5.9.3. Principles of operation
    • 5.9.4. Options for flexible PV
    • 5.9.5. Many types of photovoltaics needed for harvesting
    • 5.9.6. Spray on power for electric vehicles and more
    • 5.9.7. New world record for both sides-contacted silicon solar cells
  • 5.10. Powerweave harvesting and storage e-fiber/ e-textile
  • 5.11. Solar roads find many uses

6. ALTERNATIVES TO WIRELESS CHARGING FOR VEHICLES

  • 6.1. Electric vehicles that are never charged externally
    • 6.1.1. Introduction
    • 6.1.2. Options for energy autonomous vehicles
  • 6.2. Robotic charging
  • 6.3. Gantries and catenaries
  • 6.4. Robot arms
    • 6.4.1. DBT-CEV France
    • 6.4.2. PowerHydrant USA
    • 6.4.3. Tesla solid metal snake USA
    • 6.4.4. Volkswagen Germany
  • 6.5. Energy Independent Electric Vehicles EIV

7. EXAMPLES OF INTERVIEWS

  • 7.1. BYD China
  • 7.2. Hevo Power USA, WAVE USA, WiTricity USA
  • 7.3. Idaho State Laboratory USA
  • 7.4. Infineon USA/Germany
  • 7.5. PowerHydrant USA
  • 7.6. Qualcomm USA
  • 7.7. University of Tokyo, Japan
  • 7.8. WiTricity USA
  • 7.9. XALT Energy USA

IDTECHEX RESEARCH REPORTS AND CONSULTANCY

TABLES

  • 1.1. Wireless charging vs charging with contacts for powering electronic and electrical devices.
  • 1.2. Wireless power technologies by emission type, characteristics. Green is greatest use and potential.
  • 1.3. Wireless charging vs energy harvesting winner by power: the next 30 years
  • 1.4. Technology roadmap 2017-2027
  • 1.5. Electric toothbrushes and other electric devices WC
  • 1.6. Mobile phones and other electronic devices WC
  • 1.7. Electric vehicle WC
  • 1.8. Electric vehicle forecasts 2017-2027 - Numbers
  • 1.9. Market dynamics of low vs high power static WC
  • 2.1. Wireless power transfer technologies
  • 5.1. Comparison of pn junction and photoelectrochemical photovoltaics
  • 5.2. The main options for photovoltaics beyond conventional silicon compared

FIGURES

  • 1.1. Wurth Texas Instruments demonstrator transmitter and receiver
  • 1.2. Wireless charging forecasts compared
  • 1.3. Global smart phone shipments 2006-2021 billions.
  • 1.4. Electric vehicle forecasts 2017-2027 - Numbers
  • 1.5. Basic one-on-one WC
  • 1.6. Qualcomm vision
  • 1.7. IDTechEx vision for clean electricity from free ambient energy powering semi-dynamic and dynamic charging at point of use
  • 1.8. The trends of power needs and use of energy harvesting and wireless charging to meet them, shown as a function of power requirement
  • 3.1. Why we need wireless charging
  • 3.2. WPC situation September 2015
  • 3.3. WPC adoption forecast
  • 3.4. Innovation with Qi
  • 3.5. WPC program to have a longer range option by end 2015.
  • 3.6. Comparison of options
  • 3.7. Multi-standard solutions
  • 3.8. Regulatory perception and Qi low frequency compared with higher frequency proposed by others.
  • 3.9. The big picture
  • 4.1. Proliferation of power electronics in EVs. Newer additions shown in large font
  • 4.2. WiTricity slide on standards bodies collaborating to create a single compatible vehicle set for WC
  • 4.3. Evatran transmitter
  • 4.4. Oak Ridge National Laboratory's 20-kilowatt wireless charging system features 90 percent efficiency
  • 4.5. The new electric buses in Bruges, Belgium
  • 5.1. Highways Agency assessment of in-road inductive charging of vehicles September 2015
  • 5.2. Priority lane dynamic charging
  • 5.3. KAIST OLEVs
  • 5.4. Dynamic and static charging of the On Line Electric Vehicle OLEV bus servicing the KAIST campus in Daejon Korea.
  • 5.5. Proximity charged tram
  • 5.6. Test track schematic
  • 5.7. Test track ghost diagram
  • 5.8. AWE conference
  • 5.9. View of AWE risks
  • 5.10. E-kite ground station
  • 5.11. EnerKite presentation
  • 5.12. Google Makani M600 prototype
  • 5.13. e-Wind proposition hiring land from farmers
  • 5.14. TwingTec USP
  • 5.15. Ampyx slides - examples
  • 5.16. Altaeros presentation
  • 5.17. Altaeros BAT airborne wind turbine compared
  • 5.18. Kitemill presentation
  • 5.19. Kitegen kite providing supplementary power to a ship
  • 5.20. ABB assessment
  • 5.21. Tether drag solution
  • 5.22. Power potential of energy harvesting shock absorbers
  • 5.23. Energy harvesting shock absorbers being progressed by the State University of New York
  • 5.24. Tufts University and Electric Truck energy harvesting shock absorbers
  • 5.25. Wattshocks electricity generating shock absorber
  • 5.26. Wattshocks publicity
  • 5.27. On-road test SUV
  • 5.28. Witt presentation at IDTechEx event Berlin April 2015 - extracts
  • 5.29. Kopf Solarshiff pure electric solar powered lake boats in Germany and the UK for up to 150 people
  • 5.30. NREL adjudication of efficiencies under standard conditions
  • 5.31. Powerweave
  • 5.32. Solar roads
  • 6.1. Examples of vehicles with solar traction power and no need for charging
  • 6.2. Proliferation of actual and potential energy harvesting in land vehicles
  • 6.3. Proliferation of actual and potential energy harvesting in marine vehicles
  • 6.4. Proliferation of actual and potential energy harvesting in airborne vehicles
  • 6.5. Examples of gantry charging for buses. Top ABB TOSA, next Proterra.
  • 6.6. PowerHydrant presentation at IDTechEx event 2015
  • 6.7. Tesla solid metal snake
  • 6.8. Examples of EIVs that never need charging from external electric sources.
  • 7.1. WAVE bus system
  • 7.2. Range difficulties with pure electric industrial vehicles
  • 7.3. Proterra view on WC vs other charging of buses today.
  • 7.4. Qualcomm positioning
  • 7.5. Qualcomm car coils
  • 7.6. WiTricity overview
  • 7.7. WiTricity IP position
  • 7.8. Key extracts from the WiTricity presentation at the IDTechEx even in Berlin 2015
Back to Top