株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

自律移動体:陸上・水域・空域 (2017-2037年)

Autonomous Vehicles Land, Water, Air 2017-2037

発行 IDTechEx Ltd. 商品コード 325859
出版日 ページ情報 英文 210 Slides
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=113.38円で換算しております。
Back to Top
自律移動体:陸上・水域・空域 (2017-2037年) Autonomous Vehicles Land, Water, Air 2017-2037
出版日: 2017年08月09日 ページ情報: 英文 210 Slides
概要

当レポートでは、陸上・水域・空域における各種自律性移動体の市場を調査し、自律性の定義、対象、合理性、各種技術のコンバージェンスとそれに伴う課題、自律移技術の主なエンドユーザー部門と用途、利用例、各種R&Dの動向、関連のシステム技術、ソフトウェア・プロセッサー技術、LIDARなどの動向、エネルギー自給型の移動体 (EIV) の動向などをまとめています。

第1章 エグゼクティブサマリー・総論

  • ナビゲーション・タスク・パワーの自律性
  • 自律性のレベル
  • 自律性の合理性
  • 自律走行車の多くの実験
  • 自律性の評価
  • 各種技術のコンバージェンスと新たな課題
  • 購入の提供価値としての自律性
  • 用語
  • ナビゲーション・タスク・パワーの自律性:例
  • EIVの技術
  • 自律性の技術
  • 自律走行車:現在の参入企業
  • 市場予測
    • EV・48Vマイルドハイブリッド:販売台数
    • EV・48Vマイルドハイブリッド:売上
    • EV市場規模実績
    • EV市場規模予測
    • レベル3-5自律走行車
    • パワートレイン・自律性ハードウェアの相対的重要性
    • 自律走行車用ソフトウェア
    • 自律走行車AMoDの需要
    • 米国の自律走行車:アドレサブル市場
    • 農業用ロボット・ドローンの10カ年予測:タイプ・機能別
    • 自律性潜水艇AUV
  • 自律性のロードマップ
    • 短期
    • 長期
    • センサー・関連技術
    • EIV技術

第2章 イントロダクション

第3章 主要エンドユーザー部門

  • 農業用ロボット・ドローン
    • 超精密農業
    • 多数の低速・安価の無人農業用ロボットへの移行
    • 市場・技術の対応度:農業活動別
  • 自律船
  • 自律型無人潜水機 (AUV)
    • AUVの必要性
    • 機能
    • 例:Seastick
    • 「うらしま」AUV

第4章 レベル5自律移動体システム技術

  • 難易度の程度
  • 倉庫業・ロジスティクスにおける自律性移動体
  • 自律性技術の概要:陸上・水域・空域
  • 陸上用ハードウェアツールキット

第5章 自律性ソフトウェア・プロセッサー技術

  • ミッション中心型の進化
    • Airware
    • Skydio
    • Gateway
  • 自律移動体プラットフォーム:センシング性・制御性の機能的ダイアグラム
  • 完全な自律移動体のための処理

第6章 自律移動体のためのLIDAR

第7章 エネルギー自給型自律性移動体:航空宇宙・陸上・水域

  • 電気移動体のパワートレインの進化
  • 主な実現技術
  • Com-BATの監視機
  • Northrop Grummanの監視用飛行船の展望
  • MitreのDARPA用飛行船
  • Titan AerospaceのUAV
  • Solar EagleのUAV
  • Aurora Flight Sciencesの無人EIV機、など

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

This unique commercially oriented report has detailed market and technical analysis with many new infograms, conference slides, roadmaps and forecasts. It is based on global research by PhD level multi-lingual analysts in 2016 with frequent updates. The Executive Summary and Conclusions is insightful, detailed yet easily assimilated. An introduction gives an overview of the technologies and a chapter analyses important applications followed by a chapter on general Level 5 autonomy technology then one specifically on software and processor technology for them. A chapter covers LIDAR and associated technologies and a final chapter scopes autonomous energy independent vehicles.

Autonomous vehicles need no pilot, or even one in reserve, for at least some of the time. Many are unmanned mobile robots. Their time has come as they prowl everywhere from the ocean depths to the upper atmosphere and outer space. They are creating billion dollar businesses such as aircraft and airships aloft for five to ten years on sunshine alone carrying out surveillance or beaming the internet to the 4.5 billion people who lack it. Yes, independence of energy and electrification are closely related to this. Many land, water and airborne autonomous vehicles are already energy independent too, making the autonomy task easier. Most autonomous vehicles will be electric so the subject is also closely related to the electric vehicle scene.

This report looks at the whole subject in a critical manner revealing how the electric vehicle business at over $0.7 trillion in 2017 will include many new autonomous forms creating one billion dollar businesses for both the vehicles and their components. On the other hand, it shows how part of this story is the arrival of peak internal combustion engine, peak lead acid battery and peak car within 15 years causing mayhem in the industries involved. We note that suppliers plan to sell a lot of autonomous cars to private individuals yet 70% of us will live in cities soon where cars, autonomous or not, will be banned or severely dissuaded from entering. We question whether the necessary price increases can stick for private cars but note a host of applications where premium pricing will be no problem at all, such are the benefits.

The report reveals the many very different reasons for adoption of autonomous vehicles in commercial, industrial, military, marine, aerospace and other applications and the very different degree of difficulty in achieving what is needed. Impediments are inspected, from insurance, legal, privacy and multiple road use issues to cost reducing hardware and software and making it more capable. Will the biomimetic approach of minimal sensors and superb sensor fusion software and data management prevail or are we headed for a burgeoning amount of hardware of increasing sophistication? Which types of electric vehicle land water and air are most promising for autonomy and when? What are the lessons of combining autonomy of navigation, task and energy such as electricity from sun, wind, waves, tide, thermals? Which developers are showing most promise? Where is the money being spent? Which projects will end in tears and where are things on the hype curve today? Why are search and rescue and agriculture such promising applications?

What robot vehicles form a good escape route for car makers seeing car sales collapse? The programmer of the autonomous vehicle may make it act and react in the interests of society as a whole, for example killing the minimum number of people in an accident rather than acting in the interests of any passengers. Which is the right approach? This report addresses the issues with a balanced appraisal of it all.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Autonomy of navigation, task and power
  • 1.2. Levels of autonomy
  • 1.3. Why have autonomy?
    • 1.3.1. Aerospace
    • 1.3.2. Agriculture
    • 1.3.3. Car - taxi - bus
    • 1.3.4. Industrial shipping
    • 1.3.5. Search and rescue
    • 1.3.6. Underwater
  • 1.4. Many autonomous car trials
    • 1.4.1. First-ever public trial of a robo-taxi service
  • 1.5. Autonomy hits sales of cars but not of other vehicles
    • 1.5.1. Increasing hostility to private cars in cities whether autonomous or not
  • 1.6. Convergence of technologies and new challenges
    • 1.6.1. Overview
    • 1.6.2. Legal issues BMW view
    • 1.6.3. Operational challenges
    • 1.6.4. Technical challenges
    • 1.6.5. Ethical challenges
    • 1.6.6. Insurance challenges
    • 1.6.7. US DOT Proving Grounds - January 2017
  • 1.7. Hype curve for autonomy today
  • 1.8. Strength of autonomy purchase propositions
  • 1.9. Terminology
  • 1.10. Autonomy of navigation, task and power: examples
    • 1.10.1. Example: Vinerobot micro EV Europe
    • 1.10.2. MARS boat UK
    • 1.10.3. Seaglider AUV boat USA
    • 1.10.4. US Navy Unmanned Autonomous 'Swarm Boats'
  • 1.11. Technologies of EIVs
    • 1.11.1. EIV technology past, present and concept on land
    • 1.11.2. EIVs technology past, present and concept on and under water
    • 1.11.3. EIV technology past, present and concept in the air
    • 1.11.4. Space exploration
  • 1.12. Technology of autonomy
    • 1.12.1. Land, water, air
    • 1.12.2. Typical toolkit for autonomy of on-road vehicles
  • 1.13. The current players in on-road autonomy
  • 1.14. Market forecasts
    • 1.14.1. IDTechEx EV and 48V mild hybrid global forecasts number K 2017-2027
    • 1.14.2. IDTechEx EV and 48V mild hybrid global forecasts $ billion 2017-2027
    • 1.14.3. EV Market Value US$ Billion 2017
    • 1.14.4. EV Market Value US$ Billion 2027
    • 1.14.5. On-road Level 3-5 autonomous vehicles forecasts
    • 1.14.6. Autonomous Underwater Vehicle AUV market 2016-2022
    • 1.14.7. Relative importance of powertrain and autonomy hardware markets 2017-2037
    • 1.14.8. Software in on-road applications 2014-2030
    • 1.14.9. AMoD Demand for autonomous cars 2016-2035
    • 1.14.10. US on-road addressable market
    • 1.14.11. Ten-year market forecasts for all agricultural robots and drones segmented by type and/or function
    • 1.14.12. Autonomous Underwater Vehicle AUV market 2016-2022
  • 1.15. Autonomy roadmap
    • 1.15.1. Autonomy roadmap 2018-2020
    • 1.15.2. Autonomy roadmap 2023-2040
    • 1.15.3. Sensor and allied technology roadmap
    • 1.15.4. EIV technology roadmap 2017-2036
  • 1.16. Mining
  • 1.17. Consolidation of hardware suppliers
  • 1.18. The boat that climbs mountains: vanquisher coming soon
  • 1.19. Ford Motor Co $1 billion investment
  • 1.20. Ultrafast camera for self-driving vehicles and drones
  • 1.21. Some companies involved in autonomous vehicle technology
  • 1.22. World's first autonomous and zero emissions ship
  • 1.23. Estonian electric minibuses

2. INTRODUCTION

  • 2.1. Definition and building blocks
  • 2.2. Progress towards full autonomy
    • 2.2.1. Simplifying the environment
  • 2.3. Connectivity and automation reduce fuel consumption
  • 2.4. Level 5 autonomous vehicles
  • 2.5. Autonomous vehicles are best when they are electric
  • 2.6. Benefits of autonomy
  • 2.7. Huge impact of autonomous car as bus is calculated in 2017
  • 2.8. Jaguar Land Rover: Autonomy Insights 2017

3. SOME IMPORTANT APPLICATIONAL SECTORS

  • 3.1. Agricultural Robots and Drones
    • 3.1.1. Ultra precision farming
    • 3.1.2. Transition to swarms of slow, cheap, unmanned agricultural robots
    • 3.1.3. Market and technology readiness by agricultural activity
  • 3.2. Autonomous ships
  • 3.3. Autonomous Underwater Vehicles AUV
    • 3.3.1. Why AUVs are necessary
    • 3.3.2. Features
    • 3.3.3. Examples: Seastick
    • 3.3.4. Urashima AUV Japan
  • 3.4. Autonomous inland boats: Roboat project

4. LEVEL 5 AUTONOMOUS VEHICLE SYSTEM TECHNOLOGY

  • 4.1. Degree of difficulty
  • 4.2. Autonomous vehicles in warehousing and logistics
  • 4.3. Autonomy technology overview: land, water, air
    • 4.3.1. Examples of technologies
    • 4.3.2. Five basic building blocks.
  • 4.4. Hardware toolkit on land

5. SOFTWARE AND PROCESSOR TECHNOLOGY FOR AUTONOMY

  • 5.1. Mission centric advances
    • 5.1.1. Airware
    • 5.1.2. Skydio
    • 5.1.3. Gateway
  • 5.2. Autonomous vehicle platform: functional diagram for sensing and control
  • 5.3. Processing for fully autonomous vehicles
    • 5.3.1. Overview
    • 5.3.2. Capabilities/limitations
    • 5.3.3. Beyond microcontrollers
    • 5.3.4. System on a Chip (SoC)
    • 5.3.5. Sensor fusion
    • 5.3.6. MCU architectures
    • 5.3.7. Consolidation on the ARM architecture
    • 5.3.8. Open source hardware
    • 5.3.9. Moore's Law for processing
    • 5.3.10. Prices equilibrating
    • 5.3.11. Trends
    • 5.3.12. SBC market

6. LIDAR FOR AUTONOMOUS VEHICLES

  • 6.1. LIDAR for autonomous vehicles

7. AUTONOMOUS ENERGY INDEPENDENT VEHICLES EIV; AEROSPACE, LAND, WATER

  • 7.1. End game is energy independent pure electric not dynamic charging
  • 7.2. Electric vehicle powertrain evolution: typical figures expected for cars
  • 7.3. Key enabling technologies by powertrain
  • 7.4. Perpetual drones
    • 7.4.1. Overview
    • 7.4.2. Com-BAT surveillance bat
    • 7.4.3. Solar Ship EIV helium inflatable fixed wing aircraft Canada autonomous, sun alone
    • 7.4.4. Northrop Grumman surveillance airship up for 10 years
    • 7.4.5. Mitre DARPA airship USA
    • 7.4.6. Titan Aerospace UAV USA
    • 7.4.7. Solar Eagle UAV USA
    • 7.4.8. Self assembling autonomous unmanned EIV aircraft Aurora Flight Sciences
  • 7.5. Charge autonomous delivery truck UK
  • 7.6. New Airbus autonomous aircraft November 2016
  • 7.7. Tesla surprises November 2016
  • 7.8. Driverless-vehicle options now include scooters November 2016
  • 7.9. World's first test site for marine autonomous vehicles opens
  • 7.10. IBM and Local Motors shuttle bus that can speak sign language
Back to Top