TEL: 044-952-0102


Wearable Technology Materials 2015-2025

発行 IDTechEx Ltd. 商品コード 322712
出版日 ページ情報 英文 189 Pages
納期: 即日から翌営業日
本日の銀行送金レート: 1USD=111.96円で換算しております。
Back to Top
ウェアラブル技術素材の世界市場 Wearable Technology Materials 2015-2025
出版日: 2014年12月30日 ページ情報: 英文 189 Pages



第1章 エグゼクティブサマリーおよび結論

  • 新素材は上乗せ価格に
  • 新形成の有機、無機、複合素材
  • アッセンブリー技法
  • 素材メーカーにとって興味深い調査結果
    • 分析
    • 可能なかぎりの大量形成:コモディティ化のリスク
    • 可能なかぎり広範な利用:軽減する投資リスク
  • 世界のデバイス市場価額 - 利用分野別
    • 世界のデバイス市場価額

第2章 今後のウェアラブルエレクトロニクス向け薬品および中間物質

  • イントロダクション
    • 素材サプライヤーに有利なエレクトロニクスバリューチェーン
    • 必要とされるエレクトロニクス機能
  • 新鋭エレクトロニクスに必要な素材
    • イントロダクション
    • 要素と化合物
    • もっとも広範に需要を持つ金属 - 調査結果
    • もっとも広範に需要を持つ無機化合物 - 調査結果
    • III-IV化合物の重要性
    • もっとも広範に需要を持つ炭素同素体 - 調査結果
    • もっとも広範に需要を持つ有機化合物 - 調査結果
  • リチウム塩に対する調査結果
  • あまり一般的でない組成

第3章 ウェアラブル向け構造エレクトロニクス

  • イントロダクション
  • メガトレンド
  • 利点と課題
  • スマートスキン
  • 新発表技術
  • 重要実現技術
  • プリンテッドおよびフレキシブルエレクトロニクス
  • 3Dプリンティング
  • 詳細分析
  • 先端を行くNASA

第4章 電子織物(Eテキスタイル)

  • 存在意義と定義
  • 究極の夢
  • きびしい現実
  • 実現への道筋
  • 似て非なるもの:素材評価
    • 概論
  • 衣料用ではない電子織物
    • 例: Lumitex織り繊維発光パネル
  • 課題と機会
    • 概要
    • あらゆる形式の織物エレクトロニクスに用いられる主要素材
  • 電子織物に向けての電子繊維プロジェクト
  • 電子繊維では何でもあり
  • 電子繊維の潜在利点
  • 電子繊維への時間軸
  • 電子繊維に依存しない電子織物の例
  • 市場の大きな発展性に対して整合性の乏しい開発プログラム
    • 使い捨て vs. ウォッシャブル
    • 織物式でフレキシブルなウォッシャブルタグ
    • ウィーバブル繊維スーパーコンデンサのカーボンナノチューブ(CNT)コーティング
    • 導電性向上達成に向けてのカーボンナノチューブコーティング
    • 糸に対する真空蒸着有機物
    • 圧電用ウィーバブル繊維の酸化亜鉛ナノワイヤコーティング
    • 製品統合と製造技術

第5章 ストレッチャブルエレクトロニクス

  • イントロダクション
  • Holst Centre Netherlands
  • DuPont USA

第6章 企業プロフィール

  • Adidas/Textronics
  • バンドー化学株式会社
  • 藤倉化成株式会社
  • Grafen Chemical Industries
  • GSI
  • Paper Battery
  • Samsung
  • 積水化学工業株式会社
  • Soligie
  • Sumitomo Chemical and CDT
  • T-Ink





"Over $100 billion will be spent on materials for wearable electronics over the coming decade."

This report concerns a new market for wearable electronics that awaits those prepared to make formulations and intermediate materials for the new 2D and 3D electronic printing, in-mold electronics and other processes. These and similar processes discussed in the report are being adopted over the coming decade because wearable electronics is changing its form radically, the better to comply with physical and economic needs as the report explains.

The change of materials, suppliers and processes is driven by the fact that the new e-skin patches, e-textiles, stretchable, tightly rollable devices and so on cannot be made with the old "components in a box" approach. Electronics must become transparent or disappear into everyday objects such as spectacle frames for example. Suppliers are needed for formulations and intermediate materials at the heart of this new electronics and electrics. Premium pricing awaits.

The report evaluates how wearable electronics offers these suppliers over $100 billion in cumulative material sales over the coming decade. This report is written for these suppliers as the only comprehensive, up-to-date analysis of the whole scene that focuses on materials needed rather than the finished devices. It has many figures and tables of explanation, analysis and market value prediction for 2015-2025 for both the materials and the complete devices.

The appraisal and prediction is based on interviews worldwide in many languages, searches of proprietary IDTechEx databases and other sources and recent conference presentations, not least those at the successful recent IDTechEx events on the subject. The report is global in reach and sourced by recent extensive travel to universities, research centres, events and companies worldwide. It assesses the activities of key players and it evaluates the gaps in the emerging materials market for wearable electronics and electrics. What is the need for inorganic and organic compounds and composites by molecule and atom and for which allotropes of carbon? In what form such as ink or pre-coated film? It is all here. The report forms part of a series of reports on markets and technology for the booming market for wearable electronics. Respectively they cover the whole business, that for animals and the enabling e-textiles, stretchable electronics, printed electronics, 3D printing, structural electronics and energy harvesting.

Table of Contents


  • 1.1. Premium-priced new materials
  • 1.2. Organic, inorganic and composite in new forms
  • 1.3. Assembly technologies
  • 1.4. Survey results of interest to materials suppliers
    • 1.4.1. Analysis
    • 1.4.2. Highest volume formulations: commoditisation risk
    • 1.4.3. Broadest use: de-risking investment
  • 1.5. The global device market value by applicational sector 2015-2025
    • 1.5.1. Global device market value 2015-2025


  • 2.1. Introduction
    • 2.1.1. The electronics value chain favors materials suppliers
    • 2.1.2. Electronic capabilities required
  • 2.2. Materials needed for the new electronics
    • 2.2.1. Introduction
    • 2.2.2. Elements and compounds
    • 2.2.3. Metals most widely needed - survey result
    • 2.2.4. Inorganic compounds most widely needed - survey result
    • 2.2.5. Importance of III-IV compounds
    • 2.2.6. Allotropes of carbon most widely needed - survey result
    • 2.2.7. Organic compounds most widely needed - survey results
  • 2.3. Survey results for lithium salts
  • 2.4. Less prevalent or less established formulations


  • 3.1. Introduction
  • 3.2. Megatrend
  • 3.3. Benefits and challenges
  • 3.4. Smart skin
  • 3.5. Rollout
  • 3.6. Some key enabling technologies
    • 3.6.1. Smart materials
  • 3.7. Printed and flexible electronics
    • 3.7.1. Introduction and examples
    • 3.7.2. Basic printed modules
    • 3.7.3. Printed electronics in structural electronics
    • 3.7.4. 2D titanium carbide
  • 3.8. 3D printing
    • 3.8.1. Description and benefits
    • 3.8.2. 3D printing materials
    • 3.8.3. New 3DP materials
    • 3.8.4. Adding electronic and electrical functions
    • 3.8.5. The future
    • 3.8.6. Printed graphene batteries
  • 3.9. Detailed analysis
  • 3.10. NASA leading the way


  • 4.1. Why? What?
  • 4.2. Ultimate dream
  • 4.3. Harsh reality
  • 4.4. Road map
  • 4.5. What it is not: a materials appraisal
    • 4.5.1. General
  • 4.6. Woven not for apparel
    • 4.6.1. Example: Lumitex woven fiber optic panels
  • 4.7. Challenges and opportunities
    • 4.7.1. Overview
    • 4.7.2. Main materials used for textile electronics of all types
  • 4.8. Results of survey of e-fiber projects for e-textiles
  • 4.9. Nothing inevitable about e-fibers
  • 4.10. Potential benefits of e-fibers
  • 4.11. Timeline for e-fibers
  • 4.12. Examples of e-textiles not reliant on e-fibers
  • 4.13. Poor alignment of development programs to addressable market
    • 4.13.1. Disposable vs washable
    • 4.13.2. Woven and flexible, washable tags
    • 4.13.3. CNT coating of weavable fiber supercapacitors
    • 4.13.4. CNT coating of weavable fiber for achieving improved conductivity.
    • 4.13.5. Vacuum deposited organics on thread
    • 4.13.6. Zinc oxide nanowire coating of weavable fibers for piezoelectricity
    • 4.13.7. Product integration and manufacturing technology


  • 5.1. Introduction
  • 5.2. Holst Centre Netherlands
  • 5.3. DuPont USA


  • 6.1. Adidas/Textronics
  • 6.2. Bando Chemical Industries
  • 6.3. Fujikura Kasei Co Ltd
  • 6.4. Grafen Chemical Industries
  • 6.5. GSI
  • 6.6. Paper Battery
  • 6.7. Samsung
  • 6.8. Sekisui Chemical Co Ltd
  • 6.9. Soligie
  • 6.10. Sumitomo Chemical and CDT
  • 6.11. T-Ink




  • 1.1. Total wearable technology market human and animal and the electronically functional material value % and $ billion 2015-2025 ex-factory
  • 1.2. How and why wearable technology will adopt smart materials and totally new production processes
  • 1.3. Wearable technology trends and examples of materials needs resulting
  • 1.4. The 37 present and future device families
  • 1.5. The IDTechEx forecasts for wearable electronics for humans and animals 2015-2025 is given below in $ billion ex-factory rounded with human forecasts broken down by sector
  • 1.6. Probable scenario for functional materials breakdown by market size 2025
  • 1.7. Probable functional materials including intermediate materials by type in wearable electronics 2025
  • 2.1. Comparisons of growing sector needs and solutions
  • 2.2. Comparisons of mature sector needs and solutions
  • 2.3. Description and images of 37 families of new and growing electronics and electrics suitable for wearable technology
  • 2.4. Examples of elements and compounds most widely needed for growth markets in the new electronics and electrics over the coming decade
  • 2.5. 16 functional elements and compounds used in 37 functions of the newer wearable and other electronics
  • 2.6. Four families of carbon allotrope needed in the new electronics and electrics
  • 2.7. Organic materials used and researched for the 37 families of new electronics and electrics
  • 2.8. Manufacturers and putative manufacturers of lithium-based rechargeable batteries showing country, cathode and anode chemistry, electrolyte form, case, targeted applicational sectors and sales relationships and successes by vehicle
  • 2.9. Examples of relatively less prevalent or less established formulations than those examined earlier
  • 3.1. Benefits and challenges of structural electronics in wearables that materials suppliers can address
  • 3.2. Criteria for a component to be most suitable for subsuming into SE
  • 3.3. Structure and electronic functions of structural electronics in wearables feasible now or soon.
  • 3.4. Examples of smart materials and their functions, challenges and potential uses in structural electronics
  • 3.5. Enabling technologies for present and future structural electronics that will be applied to wearables, often with other applications coming first
  • 4.1. Some potential benefits and uses of weavable fibers that are inherently electronic or electric, the only modest commercial success being shown in green.
  • 4.2. Possible timeline for inherently electronic/ electrical woven fibers in mass production.
  • 4.3. Examples of smart textiles not reliant on fibers that are inherently electronic or electric.
  • 4.4. The evolution of the physical structure of electronics with the aspects covered in this report - e-textiles and precursor products - highlighted in green.


  • 1.1. Total wearable technology market human and animal and the electronically functional material value % and $ billion 2015-2025
  • 1.2. Trends of technology towards wearable
  • 1.3. New wearable products but made using old components-in-a-box technology
  • 1.4. The two main types of wearable technology, their typical characteristics (though not all are exhibited by any one realisation) with examples and allied subjects. The Adidas fitness monitoring sports bra at top is comfortable and s
  • 1.5. Going against the trend: smart wristwear compared to phones getting bigger
  • 1.6. Number of new device families using elemental or mildly alloyed aluminium, copper, gold, silicon and silver giving % of 37 device families analysed and typical functional form over the coming decade
  • 1.7. The anions or metals in the most popular inorganic compounds in the new electronics by number of device families using them and percentage of the 37 device families (there is overlap for multi-metal formulations). Main functional
  • 1.8. The incidence of the allotropes of carbon that are most widely being used, at least experimentally, for the 37 types of new electronics and electrics giving functional form and % and number of surveyed devices involved
  • 1.9. The families of functional organic compound that are most widely being used or investigated for the new electronics as % of sample and number of device families using them. This excludes substrates. They are mainly polyester.
  • 1.10. IDTechEx forecast for human vs animal wearable electronics 2015-2025 in $ billion
  • 1.11. IDTechEx forecast for wearable electronics for humans by sector 2015-2025$ billion ex-factory rounded
  • 1.12. Approximate ex-factory price sensitivity of wearable electronics by applicational sector and number sold
  • 1.13. Price sensitivity of wearable electronics by example vs number sold
  • 1.14. Probably functional formulations, intermediate materials and key components by type in wearable electronics 2025
  • 2.1. Healthcare example of flexible modules being used to create a wearable device based on System on Chip SoC.
  • 2.2. Trend to III-V compounds for highest performance flexible semiconductors.
  • 2.3. Open-Platform Flexible thermoelectric generator TEG
  • 3.1. Wearable electronics made using conventional electronics today
  • 3.2. Some possible future structures of multilayer multifunctional electronic smart skin on wearables
  • 3.3. Printed electronics power module developed under the European Community FACESS project
  • 3.4. Types of early win and longer term project involving printed electronics 1995-2025
  • 3.5. Hype cycle of 3DP applications
  • 3.6. Some of the enabling technologies for structural electronics and relationships between them
  • 3.7. NASA nanotechnology roadmaps
  • 3.8. NASA nanomaterials roadmap
  • 3.9. NASA nanosensor roadmap
  • 3.10. NASA biomimetics and bio-inspired systems
  • 4.1. How the common terms soft circuits, printed electronics, wearable electronics, smart textiles and e-textiles relate. The term electronics includes electrics
  • 4.2. Evolution expected to occur 2015-2025 for electronics and electrics distributed through textiles
  • 4.3. e-fibers for weaving compared to fiber optics, nanotubes and nanofibers.
  • 4.4. Lumitex flexible woven fiber optic panels suitable for wearables
  • 4.5. e-fiber projects by country
  • 4.6. e-fiber projects by function
  • 4.7. Example of transition envisaged from wearable devices to wearable e-textiles.
  • 4.8. Some of the possibilities from combining the best of disposable and laundry tags on apparel
  • 5.1. The islands in elastomer approach to stretchable electronics
  • 5.2. Stretchable LED display
  • 5.3. DuPont capability - some examples
Back to Top