株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

フレキシブルエレクトロニクスのためのバリア層の技術、市場、予測

Barrier Layers for Flexible Electronics 2016-2026: Technologies, Markets, Forecasts

発行 IDTechEx Ltd. 商品コード 312862
出版日 ページ情報 英文 114 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=114.71円で換算しております。
Back to Top
フレキシブルエレクトロニクスのためのバリア層の技術、市場、予測 Barrier Layers for Flexible Electronics 2016-2026: Technologies, Markets, Forecasts
出版日: 2015年11月12日 ページ情報: 英文 114 Pages
概要

世界のフレキシブルバリアフィルム市場は、2026年には8億7500万米ドルを超える規模に達することが予測されています。

当レポートは、フレキシブルエレクトロニクス製品に対応するバリア層技術の市場を詳細に分析し、2026年までの見通しを示したもので、各種の関連技術に加え、主要企業のプロファイルも紹介しています。

第1章 調査範囲

第2章 成熟段階へと到達しつつあるバリア技術 - 商業化の現状

  • 主なディスプレイメーカーのトレンド
    • Samsung
    • LG
    • その他
  • TFEとバリアラミネート加工
  • フレキシブルプラスチックやフレキシブルガラスを利用したMLバリア
  • シングルレイヤーとマルチレイヤー
  • フレキシブル基板の処理
  • 原子層成長法 (ALD) の現在および将来の展望と市場シェア

第3章 カプセル化についてのイントロダクション

第4章 表面平滑度 - 欠陥

  • 表面平滑度に関する重要課題
  • 微小欠陥
    • ピンホール - 粒子
    • 平滑度/ひびと傷
    • ナノ欠陥

第5章 バリア技術:これまでの進歩

  • Vitex
  • GE

第6章 バリア製造工程の進歩

第7章 バリア接着剤

  • DELO
  • tesa
  • 3M
  • Henkel

第8章 主要企業のプロファイル

  • 高分子基板にダイアドや無機レイヤーを蒸着した製品のメーカー
    • 凸版印刷
    • Vitriflex
    • Holst Centre - TNO
    • 三菱
    • 東レ
    • 3M
    • Amcor
    • Tera-Barrier
    • 富士フイルム
    • UDC
    • コニカミノルタ
    • Samsung
    • Honeywell
    • LG Display
    • Applied Materials
    • Meyer Burger Group
  • 高分子フィルムを開発しているその他の企業
    • Dow Chemical
    • Jindal
  • フレキシブルガラス
    • Schott AG
    • Corning
    • 旭硝子 (AGC)
    • 日本電気硝子 (NEG)
  • フレキシブルバリアのためのALD技術
    • Lotus
    • Beneq
    • Encapsulix
  • 他のアプローチ
    • CNM Technologies
    • 3M

第9章 バリアフィルム技術の有効市場

  • OLEDディスプレイ - OLED照明
  • 有機薄膜トランジスター (OTFT)
  • 液晶ディスプレイ - 電気泳動ディスプレイ
  • 有機太陽電池 (OPV)
  • CIGS - アモルファスシリコン

第10章 バリア性能評価技術

  • カルシウムテスト
  • MOCON
  • Vinci Technologies
  • SEMPA
  • VG Scienta
  • 蛍光トレーサー
  • ブラックスポット分析
  • トリチウムテスト
  • CEA
  • 3M
  • IMRE
  • 質量分析法 - 気体透過 (WVTRとOTR評価技術への応用の可能性)
  • Kisco Uniglobe

第11章 フレキシブルエレクトロニクス用バリアフィルムの予測

  • 有機エレクトロニクスおよびプリンテッド無機エレクトロニクスの潜在的な重要性
  • バリアフィルム市場の規模
  • プラスチック基板上のフレキシブルガラスまたは無機レイヤー

第12章 結論

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

A large opportunity lies in the development of devices in a flexible form factor that can operate without deterioration in performance, allowing them to be more robust, lightweight and versatile in their use. In order for flexible displays and photovoltaics to be commercially successful, they must be robust enough to survive for the necessary time and conditions required of the device. This condition has been a limitation of many flexible, organic or printable electronics. This highlights the fact that beyond flexibility, printability and functionality, one of the most important requirements is encapsulation as many of the materials used in printed or organic electronic displays are chemically sensitive, and will react with many environmental components such as oxygen and moisture.

These materials can be protected using substrates and barriers such as glass and metal, but this results in a rigid device and does not satisfy the applications demanding flexible devices. Plastic substrates and transparent flexible encapsulation barriers can be used, but these offer little protection to oxygen and water, resulting in the devices rapidly degrading.

In order to achieve device lifetimes of tens of thousands of hours, water vapor transmission rates (WVTR) must be 10-6 g/m2/day, and oxygen transmission rates (OTR) must be < 10-3 cm3/m2/day. For Organic Photovoltaics, the required WVTR is not as stringent as OLEDs require but is still very high at a level of 10-5 g/m2/day. These transmission rates are several orders of magnitude smaller than what is possible using any conventional plastic substrate, and they can also be several orders of magnitude smaller than what can be measured using common equipment designed for this purpose.

image1

For these (and other) reasons, there has been intense interest in developing transparent barrier materials with much lower permeabilities, a market that will reach over $200 million by 2025.

image2

This report from IDTechEx gives an in-depth review of the needs, emerging solutions and players. It addresses specific topics such as:

  • Companies which are active in the development of high barrier films and their achievements on the field to date. The report covers a range of approaches in encapsulation, such as dyads, deposition of inorganic layers on plastic substrates and flexible glass.
  • Surface smoothness and defects (such as cracks and pinholes) and the effect that these would have on the barrier behavior of the materials studied.
  • Traditional methods of measurement of permeability are reaching the end of their abilities. The MOCON WVTR measurement device, which has been an industry standard, cannot give adequate measurements at the low levels of permeability required for technologies such as organic photovoltaics and OLEDs. Other methods of measurement and equipment developed are being discussed.
  • Forecasts for displays, lighting and thin film photovoltaics (in terms of market value as well as area of barrier film sold into different verticals), in order to understand the influence that the development of flexible barriers would have at the mass deployment and adoption of these technologies.

For those developing flexible electronics, seeking materials needs and opportunities, this is a must-read report.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. SCOPE

2. BARRIER TECHNOLOGY REACHING MATURITY - COMMERCIALIZATION STATUS

  • 2.1. Trend within major display companies
    • 2.1.1. Samsung
    • 2.1.2. LG
    • 2.1.3. Others
  • 2.2. TFE vs. Barrier Lamination
  • 2.3. ML barrier on Flexible Plastics vs. Flexible Glass.
  • 2.4. Single or multi-layer?
  • 2.5. Flexible substrate handling
  • 2.6. Atomic layer deposition present and future outlook/market share

3. INTRODUCTION TO ENCAPSULATION

4. SURFACE SMOOTHNESS - DEFECTS

  • 4.1. Important considerations of surface smoothness
  • 4.2. Micro Defects
    • 4.2.1. Pinholes - particles
    • 4.2.2. Smoothness / Cracks-Scratches
    • 4.2.3. Nanodefects

5. BARRIER TECHNOLOGIES: PAST DEVELOPMENTS

  • 5.1. Vitex
  • 5.2. GE

6. ADVANCES IN BARRIER MANUFACTURING PROCESSES

7. BARRIER ADHESIVES

  • 7.1. DELO
  • 7.2. tesa
  • 7.3. 3M
  • 7.4. Henkel

8. COMPANY PROFILES

  • 8.1. Deposition of dyads or inorganic layers on polymer substrates
    • 8.1.1. Toppan Printing
    • 8.1.2. Vitriflex
    • 8.1.3. Holst Centre - TNO
    • 8.1.4. Mitsubishi
    • 8.1.5. Toray Industries Inc
    • 8.1.6. 3M
    • 8.1.7. Amcor
    • 8.1.8. Tera-Barrier
    • 8.1.9. Fujifilm
    • 8.1.10. UDC
    • 8.1.11. Konica Minolta
    • 8.1.12. Samsung
    • 8.1.13. Honeywell
    • 8.1.14. LG Display
    • 8.1.15. Applied Materials
    • 8.1.16. Meyer Burger Group
  • 8.2. Other companies developing polymer-based films
    • 8.2.1. Dow Chemical
    • 8.2.2. Jindal
  • 8.3. Flexible glass
    • 8.3.1. Schott AG
    • 8.3.2. Corning
    • 8.3.3. Asahi Glass Company (AGC)
    • 8.3.4. Nippon Electric Glass (NEG)
  • 8.4. ALD deposition for flexible barriers
    • 8.4.1. Lotus
    • 8.4.2. Beneq
    • 8.4.3. Encapsulix
  • 8.5. Other approaches
    • 8.5.1. CNM Technologies
    • 8.5.2. 3M

9. ADDRESSABLE MARKET SEGMENTS FOR BARRIER FILM TECHNOLOGIES

  • 9.1. OLED displays - OLED lighting
  • 9.2. Quantum Dots
  • 9.3. OTFTs
  • 9.4. Liquid Crystal Displays - Electrophoretic Displays
  • 9.5. OPV
  • 9.6. CIGS - amorphous Si

10. BARRIER MEASUREMENTS

  • 10.1. The Calcium Test
  • 10.2. MOCON
  • 10.3. Vinci Technologies
  • 10.4. SEMPA
  • 10.5. VG Scienta
  • 10.6. Fluorescent Tracers
  • 10.7. Black Spot Analysis
  • 10.8. Tritium Test
  • 10.9. CEA
  • 10.10. 3M
  • 10.11. IMRE
  • 10.12. Mass Spectroscopy - gas permeation (WVTR & OTR potential applications)
  • 10.13. Kisco Uniglobe

11. FORECASTS FOR BARRIER FILMS FOR FLEXIBLE ELECTRONICS 2016-2026

  • 11.1. The potential significance of organic and printed inorganic electronics
  • 11.2. Barrier films market size
  • 11.3. Flexible glass or inorganic layers on plastic substrates?

12. CONCLUSIONS

TABLES

  • 3.1. Water vapor and oxygen transmission rates of various materials, comparison to OLED/LCD requirements and the MOCON detection limit
  • 3.2. Requirements of barrier materials
  • 4.1. Oxygen transmission rates of polypropylene with various coatings
  • 8.1. Overview of main performance metrics for some of the most important developers
  • 10.1. Lower detection limits of several barrier performance measurement techniques
  • 11.1. Leading market drivers 2026
  • 11.2. Barrier layer area forecasts 2016-2026 in square meters
  • 11.3. Barrier layer market forecasts 2016-2026 in US$ millions

FIGURES

  • 1.1. Example of flexible OLED displays encapsulated in curved, rigid glass by Samsung and LG
  • 1.2. Universal Display Corporation's flexible encapsulation used in OLED lighting panels
  • 1.3. Flexible solar cell developed by Fraunhofer ISE
  • 2.1. In SID 2014 DIGEST ISSN 0097-966X/14/4501-0322 and SID 2014 DIGEST ISSN 0097-966X/14/4501-0326
  • 2.2. J Webb et al., "Flexible Glass Substrates for Electronic Applications" , Flex2014, Short Course" Design Characteristics and Considerations for Flexible Substrates"
  • 2.3. L.Moro et al. "Barrier Films and Thin Film Encapsulation AMAT Flexible Display Workshop, September 17, 2013
  • 2.4. J. Fahlteich et al., "Ultra-high permeation barriers and functional films for large-area flexible electronics" , LOPE-C 2014
  • 3.1. Schematic diagrams for encapsulated structures a) conventional b) laminated c) deposited in situ
  • 3.2. Scanning electron micrograph image of a barrier film cross section
  • 4.1. Visual defects of a selection of materials with barrier films highlighted through calcium corrosion test. Optical microscope magnification 10x
  • 4.2. SEM pictures of the Atmospheric Plasma Glow Discharge deposited silica-like films on polymer substrates. Left: Film with embedded dust particles . Right: uniform film
  • 4.3. OTR as a function of defect density, the correlation between defect density and the oxygen transmission rate
  • 4.4. SEM image of a pinhole defect formed from a dust particle
  • 4.5. Scanning electron microscope image of ITO coated on parylene/polymer film
  • 4.6. The measurement of OLED's lifetime of SiON/PC/ITO and SiON/parylene/PC/parylene/ITO substrate
  • 5.1. Examples of polymer multi-layer (PML) surface planarization a) OLED cathode separator structure b) high aspect ratio test structure
  • 5.2. Vitex multilayer deposition process
  • 5.3. SEM cross section of Vitex Barix material with four dyads
  • 5.4. Optical transmission of Vitex Barix coating
  • 5.5. Edge seal barrier formation by deposition through shadow masks
  • 5.6. Three dimensional barrier structure. Polymer is shown in red, and oxide (barrier) shown in blue
  • 5.7. Schematic of flexible OLED with hybrid encapsulation
  • 5.8. Schematic of cross section of graded barrier coating and complete barrier film structure
  • 5.9. Transparency of GE's UHB film versus wavelength
  • 6.1. Scanning electron micrograph of a thin hybrid polymer coating on SiOx deposited on a flexible PET film
  • 6.2. OTR values achieved with different POLO multilayers
  • 7.1. Area sealing
  • 7.2. DELO's light curing adhesive solution for electrophoretic displays
  • 7.3. Performance characteristics of DELO's light-curing materials
  • 7.4. 3M adhesive product offering
  • 8.1. Amcor (formerly Alcan) Packaging flexible barrier based on PET and SiOx47
  • 8.2. Electron Beam evaporation of Silicon Oxide
  • 8.3. Tera Barrier Films design and concept
  • 8.4. The layout of the Fujifilm DBD plasma reactor
  • 8.5. Surface morphology of the a) pristine PEN substrate Rq = 1.1±0.1 nm, b) 70 nm thick silica-like film deposited on PEN Rq = 1.1±0.3 nm
  • 8.6. The atmospheric pressure DBD plasma facility for production of ultra-barrier foils at pilot plant scale.
  • 8.7. LG Display hybrid solution
  • 8.8. Design of panel side to improve PCL overflow
  • 8.9. FTIR testing of Silicon Nitride deposited by PE-CVD as a flexible barrier, before and after testing
  • 8.10. Corning flexible glass showcased at SID 2011
  • 8.11. AGC's ultra-thin sheet glass on carrier glass and rolled into a coil
  • 8.12. OLED lighting panel by NEG
  • 8.13. Lithium ion battery combined with an a-Si solar cell
  • 8.14. A stack of alternating Alumina/Aluminum-titanate layers grown into a 350 μm deep by 1 μm wide porous Si membrane
  • 8.15. ALD thin film materials
  • 10.1. 2.25 m m2 area of a 50 nm layer of Ca deposited onto barrier coated PET viewed through the substrate. i. Image after 1632 h of exposure to atmosphere; ii. Image analysis whereby the grey scale of Ca degradation is processed to yie
  • 10.2. A simple set-up for measuring optical transmission of calcium test cells
  • 10.3. MOCON's Aquatran™ Model 138
  • 10.4. MOCON's Aquatran™ schematic
  • 10.5. MOCON's OX-TRAN® Model 2/1039
  • 10.6. Silica induced black spots, letters A & B mark black spots with a centralized black dot (silica particle)
  • 10.7. Black spot formation and growth mechanisms
  • 10.8. General Atomics HTO WVTR testing apparatus
  • 10.9. Measurement Scheme
  • 10.10. WVTR result from a high barrier sample
  • 11.1. Leading market drivers 2026
  • 11.2. Barrier layer area forecasts 2016-2026 in square meters
  • 11.3. Barrier layer market forecasts 2016-2026 in US$ millions
  • 11.4. Corning's Flexible glass with protective tabbing on the edges
  • 12.1. Examples of rigid e-readers by Amazon and Barnes & Noble
  • 12.2. The Wexler flexible e-reader
  • 12.3. Samsung Display's first flexible OLED product, the 5.7" Full-HD AMOLED
  • 12.4. Truly flexible OLED lighting panel developed from LG Chem
Back to Top