表紙
市場調査レポート

ストラクチュラルエレクトロニクス市場 2017年〜2027年:用途・技術・予測

Structural Electronics 2017-2027: Applications, Technologies, Forecasts

発行 IDTechEx Ltd. 商品コード 311711
出版日 ページ情報 英文 174 Pages, 19 Tables, 77 Figures
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=101.50円で換算しております。
Back to Top
ストラクチュラルエレクトロニクス市場 2017年〜2027年:用途・技術・予測 Structural Electronics 2017-2027: Applications, Technologies, Forecasts
出版日: 2016年08月22日 ページ情報: 英文 174 Pages, 19 Tables, 77 Figures
概要

ストラクチュラルエレクトロニクス(SE)は、21世紀における技術開発の最も重要な成果の1つと言えます。この技術は、日常のさまざまな場面でコンピューター機能を利用できるようにするという長年の夢を実現する重要な要素であり、必要とされる場所で電気を作り出すというエジソンの夢を洗練された方法で実現するものでもあります。SEの代表的な応用例としては、耐荷重性を備えた保護構造として機能する電子/電気部品や回路をあげることができます。これらは、従来の自動車の車体に取って代わったり、車体の形状に沿う形で取り付け可能なものであり、航空宇宙分野や土木分野への応用も考えられています。またSEは、電気機器や電子機器をエアロゲル化して自動車や航空機の使われていないスペースに充填できるようにする技術やモーフィング(形状可変)構造を備えた航空機の開発などにも応用できると期待されています。

当レポートは、今後さまざまな分野で利用されると見られているストラクチュラルエレクトロニクス(SE)に光を当て、その用途、主な形態、重要な実現技術などを明らかにしたもので、技術開発で重要な役割を担っている企業のプロファイルも紹介します。

第1章 エグゼクティブサマリーと結論

  • イントロダクション
  • SEとは何か
  • 重要な問題への対応
  • 主な利点
  • 各種応用分野の熟成度
  • 目的と利点
  • 現在期待を集めている材料とプロセス
  • スマートスキン
  • SEに含まれるコンポーネントのタイプ
  • 将来性
  • SEを実現する手段
    • 各種の新技術
  • 市場予測
  • エネルギーハーベスティング
  • ワイヤレス
  • 耐力構造の部品
  • GES Aviation
  • 最新動向

第2章 SEの用途

  • 航空宇宙
  • 自動車
  • 消費財と住宅関連の用途
  • 橋梁と建築物
  • 地上の構造物の電子機器
  • ソーラーロード
    • オランダで始まった道路で太陽光発電を行う試み
    • Hanergy、Tesla、BYD

第3章 主な形態と実現技術

  • 基礎
  • 詳細な分析
  • 技術開発をリードするNASA
  • プラスチックエレクトロニクスの初期の進歩

第4章 スマートスキン

  • 解説
  • ワイヤーとケーブルの高機能被覆材
  • 各種の事例
  • 電子スマートスキンとしての特徴を備えたNASAの開放型コイルアレイ
  • American SemiconductorのCLASシステム
  • 航空機に重点を置いたBAE Systemsのスマートスキン
  • グラフェン複合材料で翼を氷結から守る
  • 複合材料の進化による電子機能の付加

第5章 重要な実現技術

  • スマートマテリアル
    • 比較、用途
    • Fiatが発表した未来の自動車
  • プリンテッドエレクトロニクスとフレキシブルエレクトロニクス
    • イントロダクションと実例
    • 基本的なプリンテッドモジュール
    • 折り曲げ可能なコンフォーマル太陽電池
    • SEにおけるプリンテッドエレクトロニクス
  • 3Dプリンティング
    • 新素材
    • 電子機能や電気機能の追加
    • 将来像
    • プリンテッドグラフェンバッテリー
  • スプレー式(噴霧式)太陽電池
  • コンフォートフィルムのマルチステップ法とドロップキャスティング法
  • オリガミ展開構造物
  • 世界最小の合成格子半導体

第6章 ストラクチュラルスーパーキャパシターと電池

  • 多様な形態のストラクチュラルスーパーキャパシター
  • 原理
  • ストラクチュラル電池と燃料電池
  • プリンタブルソリッドステートリチオムイオン電池

第7章 建材一体型太陽光発電(BIPV)

  • 歴史
  • 定義と興味を引き付ける理由
  • 革新
  • 現在と将来におけるオプションの比較
  • OPVとDSSCの比較
  • BIPV向け色素増感太陽電池(DSSC)
  • CIGSにおける最大の進歩
  • 劇的な改善の可能性
  • 太陽光―滑り出しは早いが、優勢になるのは2050年
  • 熱エネルギー貯蔵装置
  • 建物の外装に馴染む白い太陽光パネル
  • 世界初のBIPVコンクリートファサードの設置
  • エネルギー自給型エアドームの試験プロジェクトが首尾よくスタート
  • コンクリートで太陽エネルギーを送達
  • 非毒性で安価な薄膜太陽電池

第8章 主要企業のプロファイル

  • Boeing(米国)
  • Canatu(フィンランド)
  • Faradair Aerospace (英国)
  • Local Motors(米国)
  • Neotech(ドイツ)
  • Odyssian Technology(米国)
  • Optomec(米国)
  • Paper Battery Co.(米国)
  • Pavegen smart paving(英国)
  • Soligie(米国)
  • TactoTek(フィンランド)
  • T-Ink(米国)

第9章 最新インタビュー

  • ハーバード大学のジェニファー・ルイス教授グループとVoxel8
  • スーパーキャパシター企業
  • 太陽電池およびOLED企業

IDTECHEXの調査レポート

図表

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

A business of tens of billions of dollars within the coming decade

Structural electronics (SE) is one of the most important technological developments of this century. It forms a key part of the dream, formulated decades ago, of computing disappearing into the fabric of society. It also addresses, in a particularly elegant manner, the dream of Edison in 1880 that electricity should be made where it is needed. SE is often biomimetic - it usefully imitates nature in ways not previously feasible. It is a rapidly growing multi-billion dollar business.

Structural electronics involves electronic and/or electrical components and circuits that act as load-bearing, protective structures, replacing dumb structures such as vehicle bodies or conformally placed upon them. It is of huge interest to the aerospace industry which is usually the first adopter, the automotive industry and in civil engineering both with compelling needs but its reach is much broader even than this. Electric cars badly need longer range and more space for the money and, in civil engineering, corrosion of reinforced concrete structures and tighter requirements for all structures, including early warning of problems, are among the market drivers for structural electronics.

The common factor is that both load bearing and smart skin formats occupy only unwanted space. The electronics and electrics effectively have no volume. More speculatively, electronics and electrics injected into unused voids in vehicle bodies, buildings etc., say as aerogel, could also provide this benefit without necessarily being load bearing but possibly providing other benefits such as heat insulation. Some present and future applications of structural electronics are morphing aircraft using shape memory alloys, car with printed organic light emitting diode OLED lighting on outside and inside of roof and printed photovoltaics over the outside generating electricity supercapacitor skin on an electric car replacing the traction battery as energy storage, smart skin as a nervous system for an aircraft and solar boats and aircraft running on sunshine alone. In London, a piezoelectric smart dance floor generates electricity and smart bridges across the world have sensors and more embedded in their concrete, all forms of structural electronics as it is increasingly the way to go.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Introduction
  • 1.2. What is it?
  • 1.3. Tackling urgent problems
  • 1.4. Primary benefits
  • 1.5. Maturity by applicational sector
  • 1.6. Objectives and benefits
  • 1.7. Materials and processes currently favoured
  • 1.8. Smart skin
  • 1.9. Component types being subsumed
  • 1.10. Future proof
  • 1.11. How to make structural electronics
    • 1.11.1. A host of new technologies
  • 1.12. Market forecasts
  • 1.13. Energy harvesting in general
  • 1.14. Structural as wireless
  • 1.15. Components designed for embedding in load-bearing structures.
  • 1.16. GES Aviation
  • 1.17. News in 2016
    • 1.17.1. Bat-inspired design for Micro Air Vehicles
    • 1.17.2. TactoTek awarded grant to mass produce injection molded electronics - June 2016
    • 1.17.3. Ultra thin solar panels could power wearable technology revolution - June 2016

2. APPLICATIONS OF STRUCTURAL ELECTRONICS

  • 2.1. Aerospace
  • 2.2. Cars
    • 2.2.1. BMW Germany and Nanyang TU Singapore
    • 2.2.2. Funding for development of lightweight solar modules on vehicles
  • 2.3. Consumer goods and home appliances
  • 2.4. Bridges and buildings
  • 2.5. Structural electronics on the ground
    • 2.5.1. Generating electricity
    • 2.5.2. Sensing
  • 2.6. Solar Roads
    • 2.6.1. SolaRoad Netherlands
    • 2.6.2. Hanergy, Tesla and BYD

3. KEY FORMATS AND ENABLING TECHNOLOGIES

  • 3.1. Basics
  • 3.2. Detailed analysis
  • 3.3. NASA leading the way
  • 3.4. Early progress at plastic electronic

4. SMART SKIN

  • 4.1. Description
  • 4.2. Wire and cable smart cladding
  • 4.3. Many other examples
    • 4.3.1. Hybrid Piezo Photovoltaic Harvesting
  • 4.4. NASA open coil arrays as electronic smart skin
  • 4.5. American Semiconductor CLAS systems
  • 4.6. BAE Systems UK: smart skin for aircraft then cars and dams
  • 4.7. Graphene composite may keep wings ice-free
  • 4.8. Composites evolve to add electronic functionality
    • 4.8.1. Reasons, achievements, timeline 1940-2030

5. SOME KEY ENABLING TECHNOLOGIES

  • 5.1. Smart materials
    • 5.1.1. Comparisons, uses
    • 5.1.2. Fiat car of the future
  • 5.2. Printed and flexible electronics
    • 5.2.1. Introduction and examples
    • 5.2.2. Basic printed modules
    • 5.2.3. Bendable then conformal photovoltaics
    • 5.2.4. Printed electronics in structural electronics
  • 5.3. 3D printing
    • 5.3.1. New materials
    • 5.3.2. Adding electronic and electrical functions
    • 5.3.3. The future
    • 5.3.4. Printed graphene batteries
  • 5.4. Spray on solar cells
  • 5.5. Multi-step drop-casting of conformal film
  • 5.6. Origami zippered tube
  • 5.7. Smallest synthetic lattice in the world

6. STRUCTURAL SUPERCAPACITORS AND BATTERIES

  • 6.1. Many forms of structural supercapacitor
    • 6.1.1. Queensland UT supercap car body
    • 6.1.2. Vanderbilt University structural supercapacitor
    • 6.1.3. Imperial College London/ Volvo structural supercapacitor for car
  • 6.2. Fundamentals
  • 6.3. Structural batteries and fuel cells
  • 6.4. Printable solid-state Lithium-ion batteries

7. BUILDING INTEGRATED PHOTOVOLTAICS (BIPV)

  • 7.1. History
  • 7.2. Definition and reason for new interest
  • 7.3. Evolution
  • 7.4. Comparison of options now and in future
  • 7.5. Rigid to flexible to conformal and stretchable
  • 7.6. OPV and DSSC compared
    • 7.6.1. Slow rollout
  • 7.7. Dye Sensitised Solar Cells for BIPV
    • 7.7.1. Dye Solar Cell Technology
    • 7.7.2. Sandia Laboratories
    • 7.7.3. Saule, Poland
  • 7.8. Latest CIGS progress
  • 7.9. Huge improvement possible
  • 7.10. Solar - take-off soon; dominance 2050
  • 7.11. Heat energy storage device
  • 7.12. White solar panels vanish into buildings
  • 7.13. World's first BIOPV concrete façade installation
  • 7.14. Successful start of pilot project for energy self-sufficient air dome
  • 7.15. Concrete delivers solar energy
  • 7.16. Non-toxic and cheap thin-film solar cells

8. COMPANY PROFILES

  • 8.1. Boeing, USA
  • 8.2. Canatu, Finland
  • 8.3. Faradair Aerospace UK
  • 8.4. Local Motors, USA
  • 8.5. Neotech, Germany
  • 8.6. Odyssian Technology, USA
  • 8.7. Optomec USA
  • 8.8. Paper Battery Co., USA
  • 8.9. Pavegen smart paving, UK
  • 8.10. Soligie, USA
  • 8.11. TactoTek, Finland
  • 8.12. T-Ink, USA

9. RECENT INTERVIEWS

  • 9.1. Prof Jennifer Lewis' Group at Harvard University and Voxel8
  • 9.2. Supercapacitor company visits in late 2014
    • 9.2.1. DuPont, Nippon ChemiCon
    • 9.2.2. Taiyo Yuden
  • 9.3. Photovoltaics and OLED company visits in late 2014

IDTECHEX RESEARCH REPORTS AND CONSULTING

TABLES

  • 1.1. Global problems in certain applicational sectors
  • 1.2. Benefits and challenges of structural electronics)
  • 1.3. Benefits of structural electronics in different structures
  • 1.4. Application patterns in current materials and processes
  • 1.5. Criteria for a component to be most suitable for subsuming into SE
  • 1.6. Some of the benefits of replacing conventional electronic and electric components and dumb structures with structural electronics by applicational sector most needing them
  • 1.7. Structural electronics market 2017 and 2027 US$ billion globally
  • 1.8. BIPV global market value US$ billions rounded 2016-2027
  • 1.9. Market forecast by component type for 2017-2027 in US $ billions, for printed and potentially printed electronics including organic, inorganic and composites
  • 1.10. IDTechEx WSN forecast 2017-2027 with RTLS for comparison
  • 1.11. Market forecast for fully printed sensors 2017-2027 (in $ million)
  • 1.12. Ex-factory value of EVs, in millions of US dollars, sold globally, 2016-2026, by applicational sector, rounded. Excludes 48V mild hybrids which become electric vehicles in later years by having up to four brief pure electric modes
  • 3.1. Enabling technologies for present and future structural electronics
  • 4.1. Example of demonstrated or in production (in grey) and envisaged (in green) smart skin for inanimate objects and examples of organisations involved. Largest value markets in 2025 in red. Total market will be at the billions of dol
  • 4.2. NASA SansEC open coil arrays as aircraft smart skin compared with metal mesh
  • 4.3. Composites to electronic composites: objectives, achievements, future prospects 1940-2030
  • 5.1. Examples of smart materials and their functions, challenges and potential uses in structural electronics
  • 7.1. BIPV vs traditional PV on buildings
  • 7.2. Examples of developers of TFPV

FIGURES

  • 1.1. Some future applications of structural electronics
  • 1.2. Maturity and sophistication of applications of structural electronics by sector showing strong adoption in yellow, intermediate in green and later adoption in magenta
  • 1.3. Precursors of structural electronics in yellow, transitioning to established technology in green, and speculative dreams in magenta
  • 1.4. Some possible structures of multilayer multifunctional electronic smart skin
  • 1.5. Structural electronics market 2017 globally
  • 1.6. Structural electronics market 2027 globally
  • 1.7. BIPV global market value US$ billions rounded 2016-2027
  • 1.8. Structural electronics market 2017 and 2027 $billion globally, excluding BIPV
  • 1.9. Market forecast by component type for 2017-2027 in US $ billions, for printed and potentially printed electronics including organic, inorganic and composites
  • 1.10. Total WSN market forecast 2017-2027 (in $ million)
  • 1.11. Market forecast for fully printed sensors 2017-2027 (in $ million)
  • 1.12. Maturity of wide variety of energy harvesting technologies and applications
  • 1.13. Unmanned Aerial Vehicle AUV with embedded and printed structural circuitry
  • 1.14. Two examples of new components intended for embedding in load bearing structures
  • 2.1. Some applications and potential applications of structural electronics in aerospace
  • 2.2. One option for stacked patch antenna array in aircraft body
  • 2.3. Smart composite actuator concept
  • 2.4. Slotted Waveguide Antenna Stiffened Structure SWASS
  • 2.5. Strati 3D printed car
  • 2.6. Some applications and potential applications of structural electronics in cars
  • 2.7. Supercapacitor car bodywork replaces traction batteries experimentally
  • 2.8. Supercapacitor car trunk lid, experimental
  • 2.9. Printed OLED lighting on and under car roof plus printed organic photovoltaics on the roof all as integrated structural electronics in a Daimler concept car
  • 2.10. Swedish company Midsummer are developing lightweight solar modules for vehicles
  • 2.11. Some applications and potential applications of structural electronics in consumer goods and home appliances
  • 2.12. Some applications and potential applications of structural electronics in bridges and buildings
  • 2.13. Optimising setting of concrete using embedded sensors and sensors monitoring seismic damage and deterioration
  • 2.14. Structural photovoltaics
  • 2.15. SolaRoad pilot road opened in late 2014 in the Netherlands
  • 2.16. Hanergy EIV car launch mid 2016.
  • 3.1. Key formats and some key enabling technologies for structural electronics
  • 3.2. Some of the enabling technologies for structural electronics and relationships between them
  • 3.3. European Commission project EARPA integrating electrics and electronics with structure of an electric vehicle
  • 3.4. NASA nanotechnology roadmaps
  • 3.5. NASA nanomaterials roadmap
  • 3.6. NASA nanosensor roadmap
  • 3.7. NASA biomimetics and bio-inspired systems
  • 3.8. Project status at plastic electronic for different application segments
  • 4.1. Supercapacitor smart skin on copper conducting wire or cable
  • 4.2. HPP structure
  • 4.3. HPP envisaged application in buildings
  • 4.4. Envisaged marine application of HPP
  • 4.5. NASA Sans EC open coil arrays (a) placed on aircraft (b) as array of laminar open circuit coils and (c) the shape of a typical coil used
  • 4.6. American Semiconductor CLAS for aircraft
  • 4.7. Flex ICs
  • 4.8. Conformally attached FleX IC prototype with direct write flexible interconnects
  • 4.9. Prototype smart skin
  • 4.10. FleX transparent, thin, flexible CMOS
  • 4.11. Envisioned production process for smart skin: conductor, insulator, simple display, power and flexibly mounted chips
  • 4.12. Planned UAV trial of FleX smart skin
  • 5.1. Fiat car of the future
  • 5.2. Printed electronics power module developed under the European Community FACESS project
  • 5.3. Types of early win and longer term project involving printed electronics 1995-2025
  • 5.4. The Swedish Royal Institute of Technology (KTH) at the Shell Eco Marathon competition 2014 and other earlier solar cars
  • 5.5. Cosmetic 3DP on structure
  • 5.6. Harvard 3DP battery
  • 5.7. Hype curve of 3DP applications
  • 5.8. Origami zippered tube
  • 6.1. PRISS (PRIntable Solid-State battery),
  • 7.1. Examples of BIPV
  • 7.2. Assessment of organic photovoltaics and alternatives for buildings.
  • 7.3. DSSC niche product concepts
  • 7.4. Heliatek solar film
  • 7.5. A building material that simultaneously functions as a photovoltaic cell
  • 8.1. Spectrolab roadmap for multilayer cells
  • 8.2. Faradair BEHA
  • 8.3. Odyssian technology that structurally integrates flex circuits and/or printed polymer circuits into conventional or composite structure often including conventional PCBs.
  • 8.4. Example of military structural health monitoring
  • 8.5. Envisaged applications
  • 8.6. Technology and process
  • 8.7. Capacitive touch controls and animated LEDs incorporated in plastic product cover.
  • 8.8. Printed circuits, capacitive buttons and touch screen behind a device cover
  • 9.1. Taiyo Yuden comparison of its symmetrical electrochemical double layer capacitors
  • 9.2. Solar boats in Taiwan
  • 9.3. Kaneka structural photovoltaics
  • 9.4. Kaneka OLED lighting panels showing transparency when not switched on - you see the wood etc on which they are mounted
  • 9.5. Kaneka OLED panels switched on under glasses
Back to Top