表紙
市場調査レポート

OLEDディスプレイ市場の予測2016年〜2026年:プラスチックディスプレイとフレキシブルディスプレイの台頭

OLED Display Forecasts 2016-2026: The Rise of Plastic and Flexible Displays

発行 IDTechEx Ltd. 商品コード 308904
出版日 ページ情報 英文 279 Pages, 19 Tables, 213 Figures
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=105.69円で換算しております。
Back to Top
OLEDディスプレイ市場の予測2016年〜2026年:プラスチックディスプレイとフレキシブルディスプレイの台頭 OLED Display Forecasts 2016-2026: The Rise of Plastic and Flexible Displays
出版日: 2016年05月19日 ページ情報: 英文 279 Pages, 19 Tables, 213 Figures
概要

近年、OLED (有機EL) 技術は、ディスプレイ市場において大きくシェアを伸ばしています。現在、OLEDディスプレイは、携帯電話、タブレット、テレビ、ウェアラブルデバイス向けに大量生産されています。世界のOLEDディスプレイ市場は、2026年に570億米ドルに達することが見込まれています。また、プラスチック/フレキシブルAMOLED (アクティブマトリクス式有機EL) ディスプレイについては、2020年までに180億米ドルの市場規模に達することが予測されています。

本調査レポートでは、プラスチックディスプレイやフレキシブルディスプレイが注目を集めるOLEDの市場に光を当て、携帯電話やタブレット、ノート型パソコン、テレビ、自動車や航空宇宙、ウェアラブルデバイスなど各種用途分野の市場を展望したもので、主要メーカー各社のOLED戦略、プリンテッドOLEDディスプレイ技術の進歩などに目配りしつつ、今度の予測を示しています。

第1章 エグゼクティブサマリー

第2章 イントロダクション

第3章 ディスプレイメーカー各社のOLED戦略

  • Samsung Display (SDC)
  • LG Display (LGD)
  • BOE
  • AU Optronics (AUO)
  • Shenzhen China Star Optoelectronics Technology (CSOT)
  • Visionox
  • ソニー
  • パナソニック
  • ジャパンディスプレイ (JDI)
  • シャープ
  • 東芝

第4章 プリンテッドOLEDディスプレイの進歩

  • プリンテッドTFTバックプレーン
  • プリンタブルOLED材料の供給拡大
  • インクジェット法で製造されたOLED

第5章 OLEDディスプレイの市場区分

  • モバイルデバイスのディスプレイ
  • コンピューター:タブレットとノートPC
  • テレビとモニター
  • ウェアラブルデバイス
  • 自動車と航空宇宙
  • 産業用および業務用のディスプレイ
  • マイクロディスプレイ
  • その他

第6章 市場予測

  • OLEDディスプレイ技術の定義
  • 各種市場の売上高予測
  • 各種市場の出荷量予測
  • 各種技術別の売上高予測
  • 各種技術別の出荷量予測
  • 各市場区分別の詳細な予測
    • 携帯電話
    • タブレット/ノート型PC
    • テレビとモニター
    • ウェアラブルデバイス
    • 自動車と航空宇宙
    • 産業用/業務用ディスプレイ
    • マイクロディスプレイ
    • その他
  • 追加データ

第7章 フレキシブル基板

  • 要求条件
  • 材料タイプ別のベンチマーキング
  • 主要企業のプロファイル
    • DuPont Teijin Films
    • ITRI
    • Samsung Ube Materials
    • Kolon Industries
    • Corning
    • AGC旭硝子

第8章 バックプレーン技術

  • アクティブマトリクスバックプレーンのピクセル回路
  • 半導体材料
  • パッシブマトリクスOLED (PMOLED)
  • 主要企業のプロファイル
    • Plastic Logic
    • CBrite
    • アリゾナ州立大学
    • SmartKem
    • Polyera
    • Flexink
    • Merck (EMD Chemicals)
    • BASF

第9章 フロントプレーン:OLEDのレイヤー

  • 各レイヤーの役割
  • TADF
  • シャドーマスクとホワイトOLED
  • プリンテッドOELDのためのピクセル構造
  • サブピクセルレイアウト
  • 供給企業一覧
  • 中国の供給企業
    • Beijing Aglaia Technology Development Co
    • Borun New Material Technology Co. (Borun Chemical Co)
    • Jilin Optical & Electronic Materials Co
    • Visionox
    • Xi'an Ruilian Modern Electronic Chemicals Co., Ltd
  • 欧州の供給企業
    • Heraeus
    • Merck
    • Novaled
    • Cynora
  • 日本の供給企業
    • 保土谷化学工業
    • 出光興産
    • JNC (旧チッソ)
    • コニカミノルタ
    • キューラックス
    • 三菱化学
    • 三井化学
    • 新日鉄住金化学
    • 日産化学
    • 住友化学
    • 東レ
  • 韓国の供給企業
    • Cheil Industries
    • Daejoo Electronic Materials Company
    • Doosan Corporation ElectroMaterials
    • Dow Chemical
    • Duksan Hi-Metal
    • LG Chem
    • Sun Fine Chemical Co (SFC)
  • 台湾の供給企業
    • E-Ray Optoelectronics
    • Luminescence Technology Co.
    • Nichem Fine Technology
  • 米国の供給企業
    • DuPont
    • Plextronics (Solvay)
    • Universal Display Corporation

第10章 酸化インジウムスズ (ITO) に代わる材料:透明導電体

  • タッチパネル用に開発され各種ディスプレイで使用される材料
  • 各種の利用可能な技術
  • 供給企業の一覧
  • 主要企業のプロファイル
    • Blue Nano
    • Cambrios
    • CNano
    • Canatu
    • NanoIntegris
    • Heraeus
    • Agfa

第11章 バリアフィルム技術

  • カプセル化が必要な理由
  • 現在利用可能な各種のバリア技術
  • Vitex Technology (Samsung)
  • フレキシブルガラス
  • 原子層堆積法 (ALD)

IDTECHEXの調査レポートとコンサルティング

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

The market for plastic and flexible AMOLED displays will grow to $18bn by 2020

OLED technology has recently gained significant market share in the display market. OLED displays are now mass produced for mobile phones, tablets, TVs, and wearables. IDTechEx forecasts the market for OLED displays will reach nearly $16bn this year and will grow to $57bn in 2026.

The latest evolution is plastic and flexible displays. Compared to conventional glass-based displays, plastic AMOLED panels are much thinner and lighter, enabling either slimmer devices or bigger batteries. Future flexible displays will also make foldable mobile devices a reality. The two main segments are currently smart phones and wearable devices such as smart watches. However, as the technology matures it will be possible to use those displays in other applications, such as automotive displays.

Figure 1:
Plastic and flexible OLED display revenue forecast in
four market segments

                     Source: IDTechEx

Both Samsung Display and LG Display have recently announced significant investment to expand their production capacity. IDTechEx has upgraded the forecast and now expects plastic and flexible displays to generate a $18bn market by 2020.

The rise of plastic and flexible displays will be accompanied by a shift from glass substrates to plastic substrates such as polyimide. However, glass-based displays will remain an important technology, especially in the TV segment where scale-up and cost reduction are still the main challenges.

New 4K OLED TVs were recently launched by LG and Panasonic to critical acclaim. However, some TV manufacturers are hedging their bets by investing in LCD panels enhanced with quantum dots. These so-called "quantum dot LCD" TVs will be positioned as a cheaper upgrade from existing sets. IDTechEx expects that new production technologies will make OLED more competitive, allowing the market for OLED TV panels to grow at 26% CAGR over the next decade.

New applications in wearable devices such as augmented reality (AR) and virtual reality (VR) are also coming to market and provide new opportunities for suppliers of OLED displays. Sony, Oculus, and HTC have already announced new VR headsets based on AMOLED technologies. For AR glasses, OLED microdisplays are a major contender against existing LCoS (liquid crystal on silicon) technology.

Based on a deep understanding of the technology roadmap and the existing bottlenecks, IDTechEx has forecasted the OLED display market in eight segments:

  • Mobile phone displays
  • Tablet and notebook displays
  • TV panels
  • Automotive and aerospace
  • Wearable electronics
  • Industrial and professional displays
  • Microdisplays
  • Other applications

IDTechEx has been tracking printed, organic, and flexible electronics since 2001. This report gives a unique perspective on the OLED display market, leveraging the full expertise of our analysts and the direct interviews with companies in the value chain.

The report will be useful to:

  • Players in the OLED value chain who need detailed market forecasts
  • End users who wish to incorporate plastic and flexible displays in their products
  • Investors who want a complete overview of the OLED display market

Key features of this report

  • Executive Summary available as a separate 36 slide presentation (PDF format)
  • Detailed 10-year forecasts by market segment
  • Detailed 10-year forecasts by display type (AMOLED rigid glass, AMOLED rigid plastic, AMOLED flexible, PMOLED, segmented, and microdisplays)
  • The current status on printed OLED displays
  • Technologies and players in the OLED value chain (substrate, backplane, transparent conductor, barrier film)
  • Company profiles based on direct interviews

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY

2. INTRODUCTION

  • 2.1. An industry transitioning from LCD manufacturing
  • 2.2. Why flexible displays?
    • 2.2.1. The need to differentiate
    • 2.2.2. Enabling future form factors
  • 2.3. Technology Roadmap: components needed for a flexible OLED display
  • 2.4. Technology roadmap: OLED televisions

3. OLED STRATEGIES BY DISPLAY MANUFACTURERS

  • 3.1. Samsung Display (SDC)
    • 3.1.1. Novaled acquisition
    • 3.1.2. Investment in production capacity
    • 3.1.3. Increase in display size
    • 3.1.4. The dilemma in TV
  • 3.2. LG Display (LGD)
    • 3.2.1. Focus on TV
    • 3.2.2. Plastic OLED
    • 3.2.3. Investment on both fronts
  • 3.3. BOE
  • 3.4. AU Optronics (AUO)
  • 3.5. Shenzhen China Star Optoelectronics Technology (CSOT)
  • 3.6. Visionox
  • 3.7. Sony
  • 3.8. Panasonic
  • 3.9. Japan Display Inc (JDI)
  • 3.10. JOLED
  • 3.11. Foxconn - Sharp
  • 3.12. Toshiba

4. PROGRESS IN PRINTED OLED DISPLAYS

  • 4.1. Printed TFT backplanes
    • 4.1.1. Why print TFTs?
    • 4.1.2. Japan leading the R&D in printed TFTs
  • 4.2. Growing availability of printable OLED materials
    • 4.2.1. Polymer OLED from Cambridge Display Technology (Sumitomo)
    • 4.2.2. Solution processed small molecules
  • 4.3. Inkjet Printed OLED
    • 4.3.1. Printing vs. vapour deposition
    • 4.3.2. Panasonic
    • 4.3.3. Sony
    • 4.3.4. BOE
    • 4.3.5. AU Optronics
    • 4.3.6. Kateeva

5. MARKET SEGMENTATION FOR OLED DISPLAYS

  • 5.1. Mobile displays
  • 5.2. Computers: Tablets and Notebooks
  • 5.3. TV and monitors
    • 5.3.1. LGD taking the lead
    • 5.3.2. Competing technologies
  • 5.4. Wearable electronics
  • 5.5. Automotive and Aerospace
  • 5.6. Industrial and professional displays
  • 5.7. Microdisplays
  • 5.8. Others

6. MARKET FORECAST

  • 6.1. Definition of OLED display technologies
    • 6.1.1. AMOLED rigid glass
    • 6.1.2. AMOLED rigid plastic
    • 6.1.3. AMOLED flexible
    • 6.1.4. PMOLED
    • 6.1.5. Segmented
    • 6.1.6. Microdisplays
  • 6.2. Revenue forecast by market segment
  • 6.3. Shipment forecast by market segment
  • 6.4. Revenue forecast by technology
  • 6.5. Shipment forecast by technology
  • 6.6. Details by market segment
    • 6.6.1. Mobile phones
    • 6.6.2. Tablets/Notebooks
    • 6.6.3. TV and monitors
    • 6.6.4. Wearable devices
    • 6.6.5. Automotive and aerospace
    • 6.6.6. Industrial/Professional displays
    • 6.6.7. Microdisplays
    • 6.6.8. Others
  • 6.7. Additional figures
    • 6.7.1. Compound annual growth rate
    • 6.7.2. Market share for each segment
    • 6.7.3. Revenue forecast for Plastic and Flexible OLED displays

7. FLEXIBLE SUBSTRATES

  • 7.1. Requirements
    • 7.1.1. Key challenges of flexible substrates
    • 7.1.2. Process temperature by substrate type
  • 7.2. Benchmarking by material type
  • 7.3. Company profiles
    • 7.3.1. DuPont Teijin Films
    • 7.3.2. ITRI
    • 7.3.3. Samsung Ube Materials
    • 7.3.4. Kolon Industries
    • 7.3.5. Corning
    • 7.3.6. AGC Asahi Glass

8. BACKPLANE TECHNOLOGY

  • 8.1. Pixel circuit in Active Matrix backplanes
    • 8.1.1. OLED displays are current driven
    • 8.1.2. Amorphyx: replacing TFT with diodes
  • 8.2. Semiconductor materials
    • 8.2.1. Benchmarking of the main technologies
    • 8.2.2. Organic TFT
    • 8.2.3. Metal oxide TFT
  • 8.3. Passive matrix OLED (PMOLED)
  • 8.4. Company profiles
    • 8.4.1. FlexEnable (formerly Plastic Logic)
    • 8.4.2. CBrite
    • 8.4.3. Arizona State University
    • 8.4.4. SmartKem
    • 8.4.5. Polyera
    • 8.4.6. Flexink
    • 8.4.7. Merck (EMD Chemicals)
    • 8.4.8. BASF

9. FRONTPLANE: OLED LAYERS

  • 9.1. Role of each layer
  • 9.2. TADF
  • 9.3. Shadow mask vs. White OLED
    • 9.3.1. Fine metal mask (FMM)
    • 9.3.2. White OLED approach
    • 9.3.3. Yellow emitter with color filters
  • 9.4. Pixel architecture for printed OLED
  • 9.5. Subpixel layouts
  • 9.6. Table of suppliers
  • 9.7. Suppliers in China
    • 9.7.1. Beijing Aglaia Technology Development Co
    • 9.7.2. Borun New Material Technology Co. (Borun Chemical Co)
    • 9.7.3. Jilin Optical & Electronic Materials Co
    • 9.7.4. Visionox
    • 9.7.5. Xi'an Ruilian Modern Electronic Chemicals Co., Ltd
  • 9.8. Suppliers in Europe
    • 9.8.1. Heraeus
    • 9.8.2. Merck
    • 9.8.3. Novaled
    • 9.8.4. Cynora
  • 9.9. Suppliers in Japan
    • 9.9.1. Hodogaya
    • 9.9.2. Idemitsu Kosan
    • 9.9.3. JNC (ex Chisso)
    • 9.9.4. Konica Minolta
    • 9.9.5. Kyulux
    • 9.9.6. Mitsubishi Chemical Corporation
    • 9.9.7. Mitsui Chemicals
    • 9.9.8. Nippon Steel & Sumikin Chemical
    • 9.9.9. Nissan Chemical Industries
    • 9.9.10. Sumitomo Chemical
    • 9.9.11. Toray Industries
  • 9.10. Suppliers in Korea
    • 9.10.1. Cheil Industries
    • 9.10.2. Daejoo Electronic Materials Company
    • 9.10.3. Doosan Corporation Electro-Materials
    • 9.10.4. Dow Chemical
    • 9.10.5. Duksan Hi-Metal
    • 9.10.6. LG Chem
    • 9.10.7. Sun Fine Chemical Co (SFC)
  • 9.11. Suppliers in Taiwan
    • 9.11.1. E-Ray Optoelectronics
    • 9.11.2. Luminescence Technology Co.
    • 9.11.3. Nichem Fine Technology
  • 9.12. Suppliers in USA
    • 9.12.1. DuPont
    • 9.12.2. Plextronics (Solvay)
    • 9.12.3. Universal Display Corporation

10. ITO REPLACEMENT: TRANSPARENT CONDUCTORS

  • 10.1. Developed for touch, used in displays
  • 10.2. A range of technologies available
  • 10.3. Table of suppliers
  • 10.4. Company profiles
    • 10.4.1. Blue Nano
    • 10.4.2. Cambrios
    • 10.4.3. CNano
    • 10.4.4. Canatu
    • 10.4.5. NanoIntegris
    • 10.4.6. Heraeus
    • 10.4.7. Agfa

11. BARRIER FILM TECHNOLOGY

  • 11.1. Why encapsulation is needed
    • 11.1.1. Organic semiconductors are sensitive to air and moisture
    • 11.1.2. Requirements for barrier films
    • 11.1.3. Different ways barriers are implemented
    • 11.1.4. Dyad concept
  • 11.2. Different barrier technologies available
    • 11.2.1. Pros and cons of each approach
    • 11.2.2. List of technology suppliers
  • 11.3. Vitex Technology (Samsung)
  • 11.4. Flexible glass
  • 11.5. Atomic Layer Deposition (ALD)
    • 11.5.1. Beneq
    • 11.5.2. Encapsulix

IDTECHEX RESEARCH REPORTS AND CONSULTING

TABLES

  • 2.1. Technology roadmap for flexible OLED displays
  • 2.2. Technology roadmap for OLED televisions
  • 3.1. LGD flexible OLED panel
  • 3.2. Display production in mainland China
  • 5.1. Mobile phone brands with Samsung Display OLED panels in 2014
  • 6.1. OLED display market size by segments ($ million)
  • 6.2. OLED display market size by segments (M unit)
  • 6.3. OLED display market by display type ($ million)
  • 6.4. OLED display market by display type (M unit)
  • 8.1. Comparison of OTFT against other technologies
  • 8.2. Various flexible display demonstrators made with OTFT
  • 8.3. Current status of IGZO vs. a-Si and LTPS
  • 8.4. Various flexible display demonstrators made with oxide TFT
  • 9.1. Suppliers of OLED materials
  • 9.2. Material sales
  • 10.1. Table of suppliers
  • 11.1. Water vapor and oxygen transmission rates of various materials
  • 11.2. Requirements of barrier materials
  • 11.3. Dyads or inorganic layers on polymer substrates: main performance metrics for some of the most important developers

FIGURES

  • 2.1. Display value chain
  • 2.2. Difference between OLED and LCD
  • 2.3. Evolution of TFT-LCD glass substrate size
  • 2.4. Glass substrate sizes by generation
  • 2.5. Sizes from Gen 1 to Gen 10
  • 2.6. Multiple displays per glass sheet
  • 2.7. Example of increasing TV sizes
  • 2.8. Selling points of flexible displays
  • 2.9. Flexible displays will fill the gap which arises from the demand for more portable devices but larger screen sizes
  • 2.10. Possible evolution of form factors for mobile phones
  • 2.11. Possible evolution of form factors for tablets
  • 2.12. Basic stack structure of AMLCD and AMOLED
  • 2.13. Roadmap towards flexible AMOLED displays and flexible electronics devices
  • 3.1. Samsung AMOLED production
  • 3.2. Expected revenue growth for Samsung Display
  • 3.3. Choice of TFT technology for LCD and OLED
  • 3.4. Samsung's introduction to Youm
  • 3.5. Samsung's involvement in the key technologies for flexible OLED
  • 3.6. Samsung CapEx plan
  • 3.7. 55" and 77" curved OLED TV by LG
  • 3.8. WRGB OLED structure from LG
  • 3.9. Plastic OLED display at SID 2013
  • 3.10. Face sealing encapsulation
  • 3.11. Laser assisted release
  • 3.12. Circular plastic AMOLED
  • 3.13. Flexible display roadmap by LG Display
  • 3.14. AMOLED development from 2011 to 2013
  • 3.15. AMOLED technology for TV application
  • 3.16. BOE backplane technology development
  • 3.17. Flexible display rolled at 20mm curvature radius
  • 3.18. Structure of the flexible OLED display
  • 3.19. AUO OLED history
  • 3.20. Flexible 4.3" display demonstrated in 2010
  • 3.21. Flexible 5" AMOLED display presented at SID2014
  • 3.22. Shenzhen CSOT AMOLED roadmap
  • 3.23. Flexible PMOLED backplane
  • 3.24. Structure of the flexible PMOLED panel
  • 3.25. Visionox AMOLED project
  • 3.26. 3.5 inch LTPS flexible full-color AMOLED
  • 3.27. Super Top Emission
  • 3.28. Rollable 4.1" display presented in 2010
  • 3.29. Panasonic 4K 56" OLED TV at CES 2013
  • 3.30. Structure of a 4" OLED displays made on a PEN substrate
  • 3.31. JDI strategy
  • 3.32. Foldable display by SEL
  • 3.33. Sharp's TFT technologies
  • 3.34. Flexible display with IGZO backplane presented at SID 2013
  • 3.35. Flexible 3.4" QHD OLED display by Sharp
  • 3.36. Sharp and Pixtronic MEMS
  • 3.37. Comparison between IGZO with a-Si and poly-Si
  • 3.38. Flexible AMOLED panel fabrication
  • 3.39. Photograph of the 10.2" flexible OLED display
  • 4.1. Traditional vs. printing methods
  • 4.2. Many printable semiconductor materials
  • 4.3. Device structure
  • 4.4. Electrical properties of the printed TFTs
  • 4.5. Fully printed, organic, thin-film transistor array
  • 4.6. Organic TFT based on ambient conductive metal nanoparticles
  • 4.7. Formation of organic semiconductor layer
  • 4.8. Transfer characteristics of printed OTFT
  • 4.9. Screen printed array
  • 4.10. Device structure with floating gate
  • 4.11. Offset based printing method
  • 4.12. Devices demonstrated by Toppan Printing
  • 4.13. Electrophoretic display with printed TFT array
  • 4.14. Electrophoretic display made with a printed TFT backplane at 200 ppi
  • 4.15. Inkjet printing process
  • 4.16. Photograph of the printed oxide TFTs on glass substrate
  • 4.17. PLED performance data
  • 4.18. Lifetime and efficiency
  • 4.19. Printing process
  • 4.20. UDC printable OLED materials
  • 4.21. Printing seen as an area of future growth (presented in June 2014)
  • 4.22. Characteristics of OLED production technologies
  • 4.23. Development of OLED printing
  • 4.24. Comparison of OLED printing versus OLED vapor deposition
  • 4.25. Panasonic 4K 56" OLED TV at CES 2013
  • 4.26. Sony 3" printed OLED demonstrator at SID 2011
  • 4.27. Printing process in 3 steps
  • 4.28. Structure of the hybrid printed OLED structure
  • 4.29. Pixel structure of the 17" printed OLED display
  • 4.30. Development of EL technology 1
  • 4.31. Development of EL technology 2
  • 4.32. Device structure
  • 4.33. Picture of the 65" printed TV
  • 4.34. Inkjet printing equipment designed for OLED display production
  • 4.35. Kateeva YIELDjet
  • 4.36. Improving the T95 lifetime
  • 5.1. S-Stripe pixel layout on the Motorola Moto X (left) and the Samsung Galaxy Note 2 (right)
  • 5.2. Samsung Galaxy Round and LG G Flex
  • 5.3. Concept of foldable phone display
  • 5.4. Concept of a rollable phone display
  • 5.5. Samsung Galaxy Tab S
  • 5.6. The world's first OLED tablet computer
  • 5.7. Lenovo X1 Yoga with AMOLED panel
  • 5.8. 55" and 77" curved OLED TV by LG
  • 5.9. Comparison with a conventional TV
  • 5.10. 55-in Crystal LED prototype
  • 5.11. Gear Fit smartwatch with 1.84" Curved Super AMOLED (432x128)
  • 5.12. Gear Fit curved display
  • 5.13. Samsung Gear S and LG G Watch R
  • 5.14. Asus ZenWatch with a 1.63" AMOLED display
  • 5.15. 1.3" PMOLED in a smartwatch
  • 5.16. LG Lifeband Touch with monochrome display
  • 5.17. Huawei Talkband B1 with monochrome display
  • 5.18. Futaba PMOLED
  • 5.19. Flexible display prototype driven by OTFT
  • 5.20. Apple Watch at the product launch event in September 2014
  • 5.21. Playstation VR
  • 5.22. PMOLED display used in Chrysler's Grand Cherokee
  • 5.23. PMOLED display used in GM's Chevrolet Corvette
  • 5.24. OLED display in the Lexus RX can display graphics and text
  • 5.25. Automotive displays from Futaba
  • 5.26. Digital rear-view mirror on the Audi R18 race car
  • 5.27. BMW M6 OLED display
  • 5.28. BMW M Performance Alcantara steering wheel with built-in PMOLED display
  • 5.29. AMOLED in automotive
  • 5.30. Sony 25" professional monitor
  • 5.31. eMagin's microdisplays
  • 5.32. Samsung NX30 with a 3" AMOLED display
  • 5.33. Microsoft Zune HD with 3.3" display
  • 5.34. The original Sony PSP Vita with a 5" OLED display
  • 5.35. Game controller with a small display
  • 6.1. OLED display market size by segments ($ million)
  • 6.2. OLED display market size by segments (M unit)
  • 6.3. OLED display market by display type ($ million)
  • 6.4. OLED display market by display type (M unit)
  • 6.5. Mobile phones ($ million)
  • 6.6. Mobile phones (M units)
  • 6.7. Tablet/Notebook displays ($ million)
  • 6.8. Tablet/Notebook displays (M units)
  • 6.9. TV and monitors ($ million)
  • 6.10. TV and monitors (M units)
  • 6.11. Wearable devices ($ million)
  • 6.12. Wearable devices (M units)
  • 6.13. Automotive and aerospace ($ million)
  • 6.14. Automotive and aerospace (M units)
  • 6.15. Industrial/Professional displays ($ million)
  • 6.16. Industrial/Professional displays (M units)
  • 6.17. Microdisplays ($ millions)
  • 6.18. Microdisplays (M units)
  • 6.19. Others ($ million)
  • 6.20. Others (M units)
  • 6.21. CAGR by market segment
  • 6.22. OLED market share for each segment as percentage of total market size
  • 6.23. Revenue forecast for plastic and flexible OLED displays
  • 7.1. Glass transition temperature (Tg) for various plastic substrates
  • 7.2. Upper operating temperature
  • 7.3. Heat stabilised PET and PEN
  • 7.4. Benchmarking based on 8 parameters
  • 7.5. FlexUP process for display backplane using a non-sticking debonding layer
  • 7.6. Key technologies for Samsung's flexible AMOLED displays
  • 8.1. Typical active matrix circuit for LCD, using one TFT and one storage capacitor per pixel
  • 8.2. (A) Example of a basic 2T1C circuit. (B) 4T1C circuit implementing voltage compensation
  • 8.3. Benchmarking of the semiconductor materials
  • 8.4. Improvement in carrier mobility of organic semiconductors over the last 30 years
  • 8.5. Organic materials can be rolled over a small radius
  • 8.6. Comparison between metal oxide and organic TFTs
  • 8.7. Foldable display by SEL and Nokia
  • 8.8. Tri-Fold Flexible AMOLED
  • 8.9. Historical annual sales from various suppliers of AMOLED and PMOLED
  • 8.10. Curved PMOLED display
  • 8.11. Film OLED product launch plan
  • 8.12. Glass-free OLED film
  • 8.13. Flexible PMOLED backplane
  • 8.14. Structure of the flexible PMOLED panel
  • 9.1. Typical OLED material stack in bottom emission OLED
  • 9.2. Function of each layer
  • 9.3. Various configurations for OLED materials
  • 9.4. Distinction between bottom-emission and top-emission OLED
  • 9.5. TADF performance data in litterature
  • 9.6. Vapour deposition using fine mesh mesh
  • 9.7. Alternatives to FMM
  • 9.8. WOLED was initially developed by Kodak
  • 9.9. Principles of tandem white OLED
  • 9.10. White OLED architecture used in microdisplays
  • 9.11. Two-mask display architecture
  • 9.12. Simulation results for the two-mask display architecture
  • 9.13. New AMOLED pixel architexture
  • 9.14. Deposition layout of four sub pixels
  • 9.15. Short term solution with Blue Common Layer
  • 9.16. Soluble OLED materials from Merck
  • 9.17. iPhone 5 (LCD), traditional RGB stripe
  • 9.18. Galaxy S3, Pentile S-stripe layout
  • 9.19. Galaxy S4, Diamond layout
  • 9.20. Galaxy S5 (diamond layout):
  • 9.21. Hodogaya business structure
  • 9.22. R&D activity of Idemitsu
  • 9.23. OLED material production plant, Paju
  • 9.24. Current performance of Konica Minolta
  • 9.25. Proprietary blue phosphorescent emitter
  • 9.26. Priority initiatives by sector
  • 9.27. Cheil Industries growth strategy
  • 9.28. Cheil's OLED materials sales
  • 9.29. Color performance from SFC
  • 9.30. Facilities in Korea
  • 9.31. UDC presentation slides
  • 9.32. UDC historical revenues
  • 10.1. Benchmarking different TCF and TCG technologies
  • 11.1. OLED and OPV have the most demanding requirements
  • 11.2. Schematic diagrams for encapsulated structures a) conventional b) laminated c) deposited in situ
  • 11.3. Scanning electron micrograph image of a barrier film cross section
  • 11.4. Design compromise for flexible barriers
  • 11.5. Lab WVTR achieved (in g/sq.m./day)in research for each of the companies involved in the development of flexible encapsulation solutions
  • 11.6. Surge in patent publications
  • 11.7. Examples of polymer multi-layer (PML) surface planarization a) OLED cathode separator structure b) high aspect ratio test structure
  • 11.8. Vitex multilayer deposition process
  • 11.9. SEM cross section of Vitex Barix material with four dyads
  • 11.10. Optical transmission of Vitex Barix coating
  • 11.11. Edge seal barrier formation by deposition through shadow masks
  • 11.12. Three dimensional barrier structure. Polymer is shown in red, and oxide (barrier) shown in blue
  • 11.13. Schematic of flexible OLED with hybrid encapsulation
  • 11.14. Corning's Flexible glass with protective tabbing on the edges
Back to Top