TEL: 044-952-0102


Electric Motors for Hybrid and Pure Electric Vehicles 2015-2025: Land, Water, Air

発行 IDTechEx Ltd. 商品コード 307689
出版日 ページ情報 英文 176 Pages
納期: 即日から翌営業日
Back to Top
ハイブリッドおよび純電気乗り物用電気モーター市場:陸、海、空 Electric Motors for Hybrid and Pure Electric Vehicles 2015-2025: Land, Water, Air
出版日: 2016年02月08日 ページ情報: 英文 176 Pages





第1章 エグゼクティブサマリー・総括

  • レポートの範囲
  • 市場概要およびニーズ
  • 様々な特定ニーズ
  • 一般的な必須要件
  • 動向
  • 異なる要件、純電気自動車 VS ハイブリッドEV
  • 回生制動の検討
  • 制約の削減:タイプ別動向
    • 提供されるモーターの動向:同期、非同期、ブラシ
  • ホイール内モーター導入の基準
    • 想定されるスカイタクシーおよびパーソナルVTOL機用に必要とされるホイール内モーター
  • バリューチェーンがより複雑に
  • モーターメーカーのポジショニング
  • モーターメーカーの所在地
  • 新たに成功を収めているEVのタイムライン
  • トラクションモーターの数量予測
  • 世界の乗り物用トラクションモーター市場(金額ベース)
  • 1台あたりに使われるモーター数の急増
  • 乗り物タイプ別モーター技術
  • SR(スイッチドリラクタンス)モーターは破壊的なトラクションモーター技術なのか?
  • トラクションモーターメーカーがレアアースから逃れるために競う3つの方法
  • モーター市場の規模(金額ベース)、2015年・2025年
  • 車両コストに占める割合
  • モーターの形状
  • 産業の整理統合
  • 2015年の石油価格暴落の影響

第2章 イントロダクション

  • 定義
  • ニーズ
    • トラクションモーターは多様
    • 異なる種類のトラクションモーターが一般的な領域
  • 垂直統合
  • クワッドコプター無線操縦機用モーターおよび制御装置

第3章 設計の問題

  • 課題
  • 全般的な重要側面
  • トラクションモーターの基本設計
  • 基本動作原理を超えた設計の選択肢
  • 中間ソリューション
  • 厳しい課題:簡単な最適化はない
  • 効率性倍増効果
  • 2つ以上のモーターの使用方法
    • 効率のためのダブルモーター
    • 追加出力および直並列ハイブリッドのためのモーターの連結
    • 四輪駆動のための2つのモーター
    • Tesla、モーターモデルを2車種追加
  • ホイール内・ホイール近接多重モーター
    • 2種類のホイール内モーター
  • 統合に向けた動向
  • 高電圧への移行
  • モーターの制御
    • 概要
    • コストおよび統合の問題
    • バンドギャップの大きい半導体
  • 電気自動車向け2イン1モーターが受賞

第4章 トラクションモーターメーカー159社の分析

第5章 モーター制御器/インバーター

  • 新たな機器および統合の利用による最適化
  • 欧州における懸念

第6章 その他最新情報

付録1:BATTERY/EV EVENT (ミシガン)から

付録2:IDTECHEX の調査レポートおよびコンサルタント業務



The electric vehicle business will approach a massive $500 billion in 2025 with the traction motors being over $25 billion. Their design, location and integration is changing rapidly. Traction motors propelling land, water and air vehicles along can consist of one inboard motor or - an increasing trend - more than one near the wheels, in the wheels, in the transmission or ganged to get extra power. Integrating is increasing with a growing number of motor manufacturers making motors with integral controls and sometimes integral gearing. Alternatively they may sell motors to the vehicle manufacturers or to those integrating them into transmission. These complex trends are explained with pie charts, tables, graphs and text and future winning suppliers are identified alongside market forecasts. There are sections on newly important versions such as in-wheel, quadcopter and outboard motor for boats.

Today, with the interest in new traction motor design there is a surge in R&D activities in this area, much of it directed at specific needs such as electric aircraft needing superlative reliability and power to weight ratio. Hybrid vehicles may have the electric motor near the conventional engine or its exhaust and this may mean they need to tolerate temperatures never encountered in pure electric vehicles. Motors for highly price-sensitive markets such as electric bikes, scooters, e-rickshaws and micro EVs (car-like vehicles not homologated as cars so made more primitively) should avoid the price hikes of neodymium and other rare earths in the magnets. In-wheel and near-wheel motors in any vehicle need to be very compact. Sometimes they must be disc-shaped to fit in.

However, fairly common requirements can be high energy efficiency and cost-effectiveness, high torque (3-4 times nominal value) for acceleration and hill climbing and peak power twice the rated value at high speeds. Wide operating torque range is a common and onerous requirement. Overall energy saving over the drive cycle is typically critical. Usually winding and magnet temperature must be kept below 120C and then there are issues of demagnetisation and mechanical strength.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents


  • 1.1. Scope of report
  • 1.2. Overview of markets and needs
  • 1.3. Many specific needs
  • 1.4. Common requirements
  • 1.5. Trends
    • 1.5.1. General
    • 1.5.2. Trend in motor types needed
    • 1.5.3. Trend in motors offered: synchronous, asynchronous, brushed
  • 1.6. Different requirements from pure electric vs hybrid I
  • 1.7. Regenerative braking considerations
  • 1.8. Reducing limitations: trend by type
  • 1.9. In-wheel motor adoption criteria
    • 1.9.1. In-wheel motors needed for envisioned sky taxis and personal VTOL aircraft
  • 1.10. Value chain becomes more complex
  • 1.11. Positioning of motor manufacturers
  • 1.12. Location of motor manufacturers
  • 1.13. Timelines of newly successful EVs
  • 1.14. Traction motor forecasts of numbers
  • 1.15. Global value market for vehicle traction motors
  • 1.16. Rapid increase in number of motors per vehicle
  • 1.17. Motor technology by type of vehicle
  • 1.18. Switched reluctance motors a disruptive traction motor technology?
  • 1.18.1. Conventional car with 48 V electric torque assist
  • 1.19. Three ways that traction motor makers race to escape rare earths
    • 1.19.1. Example: Ricardo switched reluctance March 2015
  • 1.20. Motor market value in 2015 and 2025
  • 1.21. Percentage of vehicle cost
  • 1.22. Shape of motors
  • 1.23. Industry consolidation
  • 1.24. Effect of 2015 oil price collapse on electric vehicles
  • 1.25. Chasing higher motor efficiency
  • 1.26. 48V mild hybrids


  • 2.1. Definitions
  • 2.2. Needs
    • 2.2.1. Traction motors are different
    • 2.2.2. Where different types of traction motor are popular
  • 2.3. Electric vehicle motors rise to two per vehicle - multiplier of market size
  • 2.4. Multirotor drone motors and controls


  • 3.1. Challenges
  • 3.2. Important aspects overall
  • 3.3. Basic design of traction motor
  • 3.4. Design choices beyond basic operation principle
  • 3.5. Intermediate solutions
  • 3.6. Tough challenges: no simple optimisation
  • 3.7. Efficiency multiplier effect
  • 3.8. Ways of using more than one motor
    • 3.8.1. Double motors for efficiency
    • 3.8.2. Coupling motors for extra power and series parallel hybrids
    • 3.8.3. Two motors for four wheel drive
    • 3.8.4. Tesla adds two motor model
  • 3.9. In-wheel and near-wheel multiple motors
    • 3.9.1. Two types of in-wheel motor
  • 3.10. Vertical integration
  • 3.11. Trend to integration
  • 3.12. Move to high voltage
  • 3.13. Motor controls
    • 3.13.1. Overview
    • 3.13.2. Cost and integration issues
  • 3.14. Award winning 2-in-1 motor for electric cars


  • 4.1. Traction motor manufacturers compared
  • 4.2. Lessons from eCarTec Munich


  • 5.1. Introduction
  • 5.2. Wide band gap semiconductors
  • 5.3. Essentials from the Power Electronics report
  • 5.4. Optimisation using new devices and integration
  • 5.5. Concern in Europe


  • 6.1. Yamaha uses Zytek's new electric powertrain for city concept vehicle




  • 1.1. Some common differences between the requirements of traction motors for pure electric vs hybrid electric traction vehicles
  • 1.2. Examples of traditional limitations and market trends by type of basic design of traction motor
  • 1.3. Most likely winners and losers in the next decade
  • 1.4. Tipping points for sales of certain I during the coming decade.
  • 1.5. Number of hybrid and pure electric vehicles produced yearly worldwide 2014-2025 in thousands by category each has at least one electric traction motor
  • 1.6. Number of extra electric traction motors on vehicles where there is more than one (in thousands) 2014-2025
  • 1.7. Price of electric motor-generator sets including controls/inverters and traction motors alone when they also act as generators in $K per vehicle 2014-2025
  • 1.8. Electric motor-generator sets including controls/inverters and traction motors alone when they also act as generators market value $ billion paid by vehicle manufacturer 2014-2025
  • 1.9. Summary of preferences of traction motor technology for vehicles
  • 1.10. Conventional car with 48 V electric torque assist as a new powertrain option shown yellow in powertrain options
  • 2.1. Advantages vs disadvantages of brushed vehicle traction motors for today's vehicles
  • 3.1. Comparison of adoption of in-wheel motors by size of vehicle, with examples, benefits sought and challenges.
  • 4.1. 167 vehicle traction motor manufacturers by name, country, asynchronous/synchronous, targeted vehicle types, claims and images


  • 1.1. Percentage of traction motor suppliers offering synchronous , asynchronous or both versions in late 2014
  • 1.2. Higen view of choices of traction motors for electric vehicles and their relative attributes.
  • 1.3. In-wheel motors needed for envisioned sky taxis and personal VTOL aircraft. Slides at 7th International Electric Aircraft Symposium.
  • 1.4. Availability of hub and in-wheel motors by number of manufacturers
  • 1.5. Approximate numbers of traction motor manufacturers making open market versions for rail alone, rail and EV and only for their own use in I with examples
  • 1.6. Geographic distribution of EV traction motor suppliers
  • 1.7. Price of electric motor-generator sets including controls/inverters and traction motors alone when they also act as generators in $K per vehicle 2014-2025
  • 1.8. Electric motor-generator sets including controls/inverters and traction motors alone when they also act as generators market value $ billion paid by vehicle manufacturer 2014-2025
  • 1.9. Two examples of costing of hybrid cars
  • 1.10. Multiple drive concepts
  • 1.11. Vehicles that have recently been redesigned from one traction motor to two. Top IFEVS pure electric microcar. Middle: 2015 Tesla Model S pure electric car. Bottom: the world's best-selling pure electric bus the BYD K9 now with two
  • 1.12. Motor market value $ billion paid by vehicle manufacturer 2015
  • 1.13. Motor market value $ billion paid by vehicle manufacturer 2025
  • 1.14. 48V mild hybrid powertrain in context
  • 1.15. 48V mild hybrid powertrain potential elements
  • 1.16. Evolution from stop-start to multifunctional rotating machines
  • 2.1. Large format multirotor
  • 2.2. Turnigy multirotor motor
  • 2.3. Brushless outrunner motor in toy electric bike
  • 2.4. Small multirotor
  • 2.5. Nanoflie
  • 2.6. Coreless motor parts
  • 3.1. Ryno single wheel motorcycle
  • 3.2. Toyota i-Road tilting 3 wheel motorcycle
  • 3.3. Oerlikon Graziano- Vocis Driveline four-speed electric drive system
  • 3.4. Kobra pure electric concept motorcycle designed for MotoCzsyz showing doubled up motors
  • 3.5. IFEVS-POLIMODEL - Oerlikon Graziano: to address and advanced powertrain with an automatic gearbox
  • 3.6. IFEVS-POLIMODEL - SOLBIAN: to address smart photovoltaic
  • 3.7. IFEVS-POLIMODEL - SOLBIAN: to address smart photovoltaic and technology transversality
  • 3.8. Mitsubishi motors two motor car system
  • 3.9. Aisin AW "AWFHT15", front wheel drive hybrid transmission with integral traction motor and generator that provides extra traction power when needed
  • 3.10. Aisin AW transmission with integrated traction motor and dynamo for Lexus GS450h, Toyota Crown Majesta
  • 3.11. Volkswagen approach to increased integration of its EV traction motors
  • 3.12. Traction battery pack nominal energy storage vs battery pack voltage for mild hybrids in red, plug in hybrids in blue and pure electric cars in green
  • 3.13. Typical e-powertrain components
  • 3.14. Scientists from Nanyang Technological University (NTU) and German Aerospace Centre (DLR) have invented a 2-in-1 electric motor which increases the range of electric vehicles.
  • 4.1. Joanneum experimental snowmobile (Austria)
  • 4.2. Streetscooter car and delivery truck (Germany)
  • 4.3. Tesla Model S - crowd puller (USA)
  • 4.4. Hyundai 1X 35 Pre-production Fuel Cell car (Korea)
  • 4.5. Mercedes B Class, referred to as the Tesla Mercedes because that company, a Daimler investment, assisted in its creation. (Germany)
  • 4.6. Romet car (Poland)
  • 4.7. TukTuk taxi (Netherlands)
  • 4.8. Nissan Taxi (Japan)
  • 4.9. Green Go iCaro car (China)
  • 4.10. Mercedes SLS AMG car (Germany)
  • 4.11. Oprema concept (Slovenia)
  • 5.1. Typical e-powertrain components
  • 5.2. On-going Development of Hitachi automotive inverters
  • 5.3. Toyota Prius 2010 electronic control unit showing bed of IGBT chips
  • 5.4. The new MAN hybrid bus from Germany showing the power inverter and the use of a supercapacitor (ultracapacitor) instead of a battery, putting different demands on the power electronics
  • 5.5. Example of modern vehicle inverters from Phoenix international, a John Deere Company as exhibited ant eCarTec Germany October 2012. The large unit bottom left is used in the MAN hybrid electric city bus which uses supercapacitors
Back to Top