表紙
市場調査レポート

各種用途向け3Dプリンティング技術

Applications of 3D Printing 2014-2024: Forecasts, Markets, Players

発行 IDTechEx Ltd. 商品コード 300643
出版日 ページ情報 英文 159 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=105.42円で換算しております。
Back to Top
各種用途向け3Dプリンティング技術 Applications of 3D Printing 2014-2024: Forecasts, Markets, Players
出版日: 2015年11月01日 ページ情報: 英文 159 Pages
概要

世界の3Dプリンター市場は、深化と拡大を続けており、2025年には70億ドル規模に拡大すると予想されます。この市場は、プロトタイピングなど既存の主要な用途分野で今後も成長が期待できるほか、各種の新たな用途分野も急速に拡大する可能性があり、とりわけバイオプリンティングの市場規模は2025年の時点で30億ドルを超える見通しです。近年3Dプリンター市場が急成長を遂げた背景には、重要な特許が期限切れとなり、多くのメーカーが消費者向けの安価なデスクトップ3Dプリンターを市場に投入できるようになったという事情があります。現在3Dプリンターはメディアの寵児となっており、注目度の高い消費者向けの製品は、価格が安いため他の製品に比べ市場規模は小さいものの、影響力は極めて大きいといえます。3Dプリンティング技術の新たな用途分野として有望視されているのは、航空機の重要部品、ロケットエンジン、大学などの教育機関、医薬品や化粧品の開発、電気電子部品などであり、とりわけ医薬品の毒性などを検査するためヒトの細胞を再現するバイオプリンティングの技術は、動物実験の廃止へと向かう世界的なトレンドを背景に、今後大きく成長すると見られています。

当レポートは、現在の用途分野と開発の初期段階にあるさまざまな用途分野の3Dプリンティング技術に光を当て、詳細に分析したもので、3Dプリンターの主なメーカーやユーザー企業のプロファイルに加え、今後の成長を下支えする技術と市場の現状、各分野の市場規模なども明らかにしています。

第1章 エグゼクティブ・サマリー

第2章 3Dプリンターの現在の用途

  • 航空宇宙
    • ジェットエンジンの燃料ノズル
    • KySat-2
    • SULSA
  • 建築
  • 自動車
    • プロトタイピング
    • AreionとEve
    • Triumph Rocket III
  • 工芸
    • アクションフィギュア
    • 宝飾品
    • ミニチュア
    • 装飾品
    • 小道具
  • 消費財
  • 衣類
  • 教育
    • 脳外科手術
    • X線透視診断装置Cアームの実物大模型
  • ガジェット
    • iPhoneケース
    • iPodホルダー
  • ホビー
  • 司法
    • 地図
  • 医療
    • 整形外科
  • プロトタイピング
  • スポーツ

第3章 3Dプリンターの新たな用途

  • 航空宇宙
    • 着陸装置
    • ジェットエンジンのブラケット
    • ジェットエンジンの低圧タービンブレード
    • ロケットエンジン
    • SpaceX
    • AMAZE
  • 工芸
  • 自動車
    • Urbee 2
  • 建築
    • レンガ
    • コンクリート
  • 教育
  • 食品
    • 菓子類
    • 肉類
  • 先進設計
  • 機械
  • 医療
    • バクテリアトラップ
    • 微細構造
    • 神経
    • 臓器組織
    • 人工装具
    • 皮膚
  • プリンテッドエレクトロニクス
  • プリンテッドはんだ
    • 導電性熱可塑性フィラメント
    • 導電性インク
  • 宇宙
    • 軌道上
    • 火星

第4章 主要企業とエンドユーザー

  • 3D MicroPrint
  • 3D Systems
  • Arcam
  • Boeing
  • EOS
  • Ford
  • General Electric
  • General Motors
  • Mcor Technologies
  • NASA
  • Optomec
  • Rolls Royce
  • Sciaky
  • Shapeways
  • Shenyang Aircraft Corporation
  • Siemens
  • Stratasys
  • Makerbot Replicator
  • Ultimaker

第5章 技術面の現状

  • 製作物の大型化
  • 製作のスピードと精度
  • ソフトウェア
  • 非破壊検査(NDE)
  • 積層造形のコンセプト
  • プリンターの費用
  • フィードバック
  • エネルギー効率
  • 材料

第6章 市場の現状

  • 航空宇宙
  • 建築
  • 建設
  • 消費者向けプリントサービス
  • 消費者向けのプリンターとスキャナー
  • 宝飾品
  • 医療

第7章 市場規模と成長

  • 航空宇宙
  • 建築
  • 自動車
  • 建設
  • 歯科
  • 教育
  • 食品
  • 宝飾
  • 消費者向けプリンター
    • 熱可塑性プラスチック押し出し成形
    • 感光性樹脂硬化
  • 消費者向けプリントサービス
  • 医療
    • 整形外科
    • ヒトの組織

第8章 用語集

図表

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

3D printing markets are growing in both depth and breadth. The global 3D printing market will reach at least $7 billion by 2025, which includes a conservative estimate of $3 billion for bioprinting. Traditional applications such as prototyping continue to grow but have been, and will continue to be, augmented with a wide variety of new applications.

The sudden growth in 3D printing was driven by the expiration of key patents that allowed dozens of small companies to start producing cheap, desktop 3D printers for consumers. This fuelled a media frenzy that thrust 3D printing into the limelight decades after its original commercialization. For example, newcomer Makerbot quickly overtook established players 3D Systems and Stratasys in terms of both installed base and proportion of Google searches:

Figure 1. Proportion of Google searches for three main players

                     Source: Google Trends

Although the size of the market for consumer 3D printers is relatively small because the printers are so much cheaper, the impact they are having is huge. 3D printing is now a household name.

This report shows that the majority of 3D printing applications are still embryonic in terms of development. The hype around consumer printers is dying out but will soon be replaced with hype around 3D printed critical components in commercial airliners; fully-printed rocket engines; 3D printing in schools and universities; animal-rights-friendly bioprinted human tissues for drug toxicity and cosmetics testing; and, ultimately, 3D printed electrics and electronics starting with the replacement of wiring with functional 3D printed enclosures containing embedded conductive pathways:

Figure 2. 3D printing application hype curve

                     Source: IDTechEx

Here, IDTechEx has pinpointed the current status of existing and emerging 3D printing application on the hype curve.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY

2. EXISTING APPLICATIONS OF 3D PRINTING

  • 2.2. Aerospace
    • 2.2.1. Jet engine fuel nozzles
    • 2.2.2. KySat-2
    • 2.2.3. SULSA
  • 2.3. Architecture
  • 2.4. Automotive
    • 2.4.1. Prototyping
    • 2.4.2. Areion and Eve
    • 2.4.3. Triumph Rocket III
  • 2.5. Art
    • 2.5.1. Action figures
    • 2.5.2. Jewelry
    • 2.5.3. Miniatures
    • 2.5.4. Ornaments
    • 2.5.5. Props
  • 2.6. Consumer
  • 2.7. Clothing
  • 2.8. Education
    • 2.8.1. Brain surgery
    • 2.8.2. Mock-up Fluoroscopic C-Arm
  • 2.9. Gadgets
    • 2.9.1. iPhone cases
    • 2.9.2. iPod holders
  • 2.10. Hobbyist
  • 2.11. Justice
    • 2.11.2. Maps
  • 2.12. Medical
    • 2.12.1. Orthopaedics
  • 2.13. Prototyping
  • 2.14. Sport

3. EMERGING APPLICATIONS OF 3D PRINTING

  • 3.1. Aerospace
    • 3.1.1. Landing gear
    • 3.1.2. Jet engine brackets
    • 3.1.3. Jet engine low-pressure turbine blades
    • 3.1.4. Rocket engines
    • 3.1.5. SpaceX
    • 3.1.6. AMAZE
  • 3.2. Art
  • 3.3. Automotive
    • 3.3.1. Urbee 2
  • 3.4. Construction
    • 3.4.1. Bricks
    • 3.4.2. Concrete
  • 3.5. Education
  • 3.6. Food
    • 3.6.1. Confectionaries
    • 3.6.2. Meat
  • 3.7. Advanced design
  • 3.8. Mechanical
  • 3.9. Medical
    • 3.9.1. Bacterial traps
    • 3.9.2. Microstructures
    • 3.9.3. Nerves
    • 3.9.4. Organ tissue
    • 3.9.5. Prosthetics
    • 3.9.6. Skin
  • 3.10. Printed electronics
  • 3.11. Printed solder
    • 3.11.2. Conductive thermoplastic filament
    • 3.11.3. Conductive inks
  • 3.12. Space
    • 3.12.1. On-orbit
    • 3.12.2. Lunar
    • 3.12.3. Mars

4. MAIN PLAYERS AND END USERS

  • 4.1. 3DPonics
  • 4.2. Biobots
  • 4.3. BMW
  • 4.4. Boeing
  • 4.5. BotFactory
  • 4.6. Chemcubed
  • 4.7. CRP Group
  • 4.8. Dyson
  • 4.9. EPSRC
  • 4.10. Ford Motor Company
  • 4.11. Fraunhofer Additive Manufacturing Alliance
  • 4.12. Fripp Design Ltd
  • 4.13. Impossible Objects
  • 4.14. Lockheed Martin
  • 4.15. LUXeXceL
  • 4.16. Nascent Objects, Inc
  • 4.17. Norsk Titanium
  • 4.18. Orbital Composites
  • 4.19. Organovo
  • 4.20. Reebok International
  • 4.21. Star Prototype
  • 4.22. Volvo Construction Equipment
  • 4.23. Voxel8

5. TECHNOLOGY READINESS

  • 5.1. Larger build volumes
  • 5.2. Build speed vs precision
  • 5.3. Software
  • 5.4. Non-destructive examination (NDE)
  • 5.5. The concept of layers
  • 5.6. Cost of printers
  • 5.7. Feedback
  • 5.8. Energy efficiency
  • 5.9. Materials

6. MARKET READINESS

  • 6.2. Aerospace
  • 6.3. Architecture
  • 6.4. Construction
  • 6.5. Consumer print services
  • 6.6. Consumer printers and scanners
  • 6.7. Jewelry
  • 6.8. Medical

7. MARKET SIZE AND GROWTH

  • 7.1. Aerospace
  • 7.2. Architecture
  • 7.3. Automotive
  • 7.4. Construction
  • 7.5. Dental
  • 7.6. Education
  • 7.7. Food
  • 7.8. Jewelry
  • 7.9. Consumer printers
    • 7.9.1. Thermoplastic extrusion
    • 7.9.2. Photopolymer curing
  • 7.10. Consumer print services
  • 7.11. Medical
    • 7.11.1. Orthopaedics
    • 7.11.2. Human tissues

8. GLOSSARY

IDTECHEX RESEARCH REPORTS AND CONSULTANCY

FIGURES

  • 1.1. Traditional value chain in 3D printing
  • 1.2. Proportion of Google searches for three main players
  • 1.3. Value chain for print shops
  • 1.4. Value chain for consumer-level 3D printers with a free market for consumables
  • 1.5. Historical and forecast price of thermoplastic filament for consumer-level 3D printers
  • 1.6. Hype curve for 3D printing applications
  • 1.7. Market growth vs size for 3D printing applications
  • 2.1. Breakdown of applications according to the Shapeways print service
  • 2.2. Breakdown of applications according to the 3D Hubs print service
  • 2.3. Fuel nozzle for a jet engine
  • 2.4. A 3D printed SULSA aircraft
  • 2.5. 3D printed architectural model
  • 2.6. 3D printed architectural element installed in a building
  • 2.7. Ford technologist Dennis DuBay removing the sand surrounding a cast mold for an engine component
  • 2.8. Pouring molten metal into a 3D printed sand mold
  • 2.9. Cast metal part created from a 3D printed mold
  • 2.10. Finished part after post-processing
  • 2.11. The Areion and Eve cars created for the Formula Student Challenge
  • 2.12. 3D printed action figures
  • 2.13. 3D printed jewelry samples
  • 2.14. Gold-plated 3D printed jewelry
  • 2.15. 3D printed ring generated by wrapping an image around the ring
  • 2.16. 3D printed life-size replica of an unborn child
  • 2.17. Website allowing consumers to create a Star Trek figurine of themselves
  • 2.18. Triple gear
  • 2.19. 3D printed Strandbeest walking in the wind
  • 2.20. Three different designs of Strandbeest that can be 3D printed
  • 2.21. Complicated mechanism printed as a single object
  • 2.22. Fractal coffee table
  • 2.23. Mjölnir hammer
  • 2.24. Monograph of the letters A and H
  • 2.25. Child's drawing and full-color 3D printed derivative
  • 2.26. 3D printed bobble head
  • 2.27. Evolutionary design
  • 2.28. Easy-to-use CAD software from Microsoft's Windows Store
  • 2.29. Monster customised on a mobile phone and the corresponding 3D printed toy
  • 2.30. The N12, a 3D printed bikini
  • 2.31. Close-up of the intricate design of the N12 bikini
  • 2.32. Mock-up human head used to train neurosurgeons
  • 2.33. Real and mock-up fluoroscopic arm
  • 2.34. 3D printed iPhone case that contains moving gears
  • 2.35. Nanolet bracelet
  • 2.36. Pod à porter is a necklace
  • 2.37. Custom Arduino case for a hobbyist electronics project
  • 2.38. A simple 3D printed fixture
  • 2.39. A 3D printed bike lock
  • 2.40. A 3D printed nozzle for a vacuum cleaner
  • 2.41. A 3D printed lathe
  • 2.42. A 3D printed tool for creating hobbed bolts
  • 2.43. A 3D printed GoPro mount for a Nerf gun
  • 2.44. A 3D printed reconstruction of a crime scene
  • 2.45. A full-color 3D printed height map
  • 2.46. Visualization of an implanted hip socket
  • 2.47. Comparison of custom 3D printed vs traditional off-the-shelf knee implants
  • 2.48. Visualization of 3D printed surgical instrumentation used to implant a custom knee
  • 2.49. Aireal prototype
  • 2.50. Fencing swords and some 3D printed hilts
  • 3.1. Traditional bracket design for subtractive manufacture
  • 3.2. Award-winning bracket design for 3D printing
  • 3.3. Competing bracket designs for 3D printing
  • 3.4. Low-pressure turbine blade 3D printed in titanium-aluminide
  • 3.5. Rocket engine 3D printed as a single object
  • 3.6. Experimental 3D printed rocket engine design
  • 3.7. 3D printed pottery
  • 3.8. The Urbee 2
  • 3.9. Large 3D printed component of the Urbee 2
  • 3.10. 3D printed bricks
  • 3.11. Various designs of 3D printed bricks
  • 3.12. Traditional manufacture of replacement stones for York Minster
  • 3.13. Contour Crafting robot for the construction industry
  • 3.14. Visualization of 3D printed corrugated walls enclosing non-printed functional elements
  • 3.15. A 3D printed wall
  • 3.16. 3D printed graded concrete
  • 3.17. 3D printed foam structure
  • 3.18. 3D printed bench
  • 3.19. The D-shape printer in action
  • 3.20. A 3D printed building
  • 3.21. Architectural design that leverages the capabilities of 3D printing
  • 3.22. 3D printed confectionaries
  • 3.23. 3D printed fractal microstructures
  • 3.24. Heat exchanger designed to be 3D printed
  • 3.25. Traditional (non-printed) fractal softener
  • 3.26. Design, 3D printed ABS prototype and 3D printed metal impeller
  • 3.27. A prison for bacteria
  • 3.28. A microvalve designed to prevent backflow in veins, high-porosity tissue engineering scaffold, and an array of micro needles
  • 3.29. High-speed photograph of jetted living nerve cells
  • 3.30. Novel apparatus used to jet living nerve cells
  • 3.31. Cross-section of multi-cellular bioprinted human liver tissue, stained with hematoxylin & eosin (H&E)
  • 3.32. 3D printed prosthetic eyes
  • 3.33. 3D scanning and bioprinting for a burns victim
  • 3.34. 3D printed solder and early 3D printed electronics employing printed thermoplastic and solder in a single object
  • 3.35. Experimental 2.5D printed electronics employing a 3D printed object with electronics printed onto its surface
  • 3.36. 3D printed samples by NASA using their own technology
  • 3.37. A 1.5 tonne sample block created using the D-shape printer
  • 5.1. A cable-suspended robotic gantry designed to 3D print large structures
  • 5.2. Power vs build rate for 3D printers
  • 5.3. Intricate designs made for 3D printing using artificial intelligence
  • 5.4. Procedurally-generated Trabecular structures on the surface of a hip implant
  • 5.5. A custom Cranio-Maxillofacial implant
  • 5.6. Visualization of a vehicular robot depositing material as part of a swarm 3D printing process
  • 6.1. Build volume vs precision categorised by application sector
  • 6.2. Build volume vs precision categorised by 3D printing process
  • 7.1. Market value ($M) forecasts for the aerospace industry2012-2025
  • 7.2. Market value ($M) forecasts for the aerospace industry2012-2025
  • 7.3. Market value ($M) forecasts for the aerospace industry2012-2025
  • 7.4. Market forecast for sub-$4k printers
  • 7.5. Historical and forecast price of thermoplastic filament for consumer-level 3D printers
  • 7.6. Estimated revenue for different applications derived from Shapeways data
Back to Top