表紙
市場調査レポート

スーパーキャパシター/ウルトラキャパシターに関するインタビュー、戦略、ロードマップ

Supercapacitor / Ultracapacitor Interviews, Strategies, Road Map 2015-2025 - Electrochemical Double Layer Capacitors & Supercabatteries AEDLC: User & technology supplier interviews.

発行 IDTechEx Ltd. 商品コード 292024
出版日 ページ情報 英文 220 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=105.69円で換算しております。
Back to Top
スーパーキャパシター/ウルトラキャパシターに関するインタビュー、戦略、ロードマップ Supercapacitor / Ultracapacitor Interviews, Strategies, Road Map 2015-2025 - Electrochemical Double Layer Capacitors & Supercabatteries AEDLC: User & technology supplier interviews.
出版日: 2016年03月01日 ページ情報: 英文 220 Pages
概要

従来から、充電式バッテリーはエネルギー密度製品として使われてきており、キャパシターを使ったその他のデバイスは出力密度製品として使われてきました。2023年に向けてはより出力密度の高い充電式バッテリーが市場に投入される見込みとなっています。しかし、この出力密度の高い充電式電池は、多くのエネルギー密度を犠牲にします。このため、これを補うために、よりエネルギー密度の高いスーパーキャパシターが市場に投入されることが期待されます。この特性の統合が、特にパワーアプリケーションにおいて、両者を並行して利用する組み合わせの拡大へとつながりました。バッテリーとスーパーキャパシターの組み合わせは、理想的なバッテリーの性能に近付くものです。

当レポートでは、スーパーキャパシターおよびウルトラキャパシターを取り上げ、製品の概要、将来の技術ロードマップ、現在および将来の用途を概括し、80社に及ぶ企業へのインタビューと各社の戦略、ならびに開発業者・材料サプライヤー・学術機関へのインタビューをまとめるとともに、主要な企業のプロファイルを提示しています。

第1章 エグゼクティブサマリー・総論

  • スーパーキャパシターと電池の統合
  • 用途・テリトリー別の成功事例
  • 技術ロードマップ
  • 将来における最も重要な商業的な技術進歩
  • ほとんどがエリア改善を追及
  • さらに低い温度
  • 価格および機能における課題
  • 電気自動車の移動距離を増やすスーパーキャパシター
  • 自動車用スーパーキャパシター
  • 各種技術の発生
  • 不可能の実現
  • 製造業者と想定される製造業者
  • 新規参入者
  • スーパーキャパシターとリチウムイオン電池は今や一つの事業
  • 世界的なバリュー市場のリーダーシップの変化?
  • スーパーキャパシターは数10億米ドル規模の電解コンデンサー市場を掴む
  • 今後の戦略

第2章 イントロダクション

第3章 求められる進化と認められた進化

  • 自動車用スーパーキャパシター
  • スーパーキャパシターが確実により多くのバッテリーに置き換わるようにする

第4章 現在および将来の用途

  • パルス電源
  • ブリッジ電源
  • 主電源
  • メモリーバックアップ
  • 製造業者の成功事例・戦略:用途別
  • 電気自動車の移動距離を増やすスーパーキャパシター

第5章 製造業者80社の調査

第6章 実績・目標:製造業者別

第7章 非商業的開発プログラムの例

第8章 企業へのインタビューおよび各社のスーパーキャパシター戦略の解説

  • IDTechEx主催のスーパーキャパシターイベント(2014年11月、カリフォルニア)
    • 指導権争い
    • 構造
    • 小規模のスーパーキャパシター
  • サプライヤーへのインタビュー
    • Cap-XX(オーストラリア)
    • Cellergy(イスラエル)
    • East Penn Manufacturing(米国)
    • Elton Super Capacitor(ロシア)
    • Inmatech(米国)
    • Ioxus(米国)
    • JS Micro/ JS Radio/JM Energy(日本)
    • Nanotune Technologies(米国)
    • NECトーキン(日本)
    • Nesscap Energy Inc(カナダ/韓国)
    • ニチコン(日本)
    • 日本ケミコン/United ChemiCon(日本)
    • Skeleton Technologies (エストニア/ドイツ)
    • Yo-Engineering(ロシア)
    • Yunasko(ロシア)
  • ユーザーへのインタビュー
    • Bombardier(カナダ)
    • Hydrogenics Corporation(米国)
    • ホンダ技研工業(日本)と日本ケミコン(日本)
    • 小松製作所(日本)
  • New Supercapacitor Advances(2014年、日本)

第9章 開発業者・材料サプライヤー・学術機関へのインタビュー

  • ダイキン工業(日本)
  • Hutchinson (TOTAL) (フランス)
  • IFEVS(イタリア)
  • ノースイースタン大学(米国)
  • NYSERDA
  • Tecate Group(米国)
  • Yuri Gogotski教授

第10章 企業プロファイル

  • Elbit Systems
  • Aowei Technology
  • Cap-XX
  • ELTON
  • Hutchinson SA
  • Cellergy
  • Ioxus
  • Maxwell Technologies Inc
  • Nesscap Energy
  • Paper Battery Company
  • Saft Batteries
  • Skeleton Technologies
  • WIMA Spezialvertrieb elektronischer Bauelemente
  • Yunasko

付録1:スーパーキャパシターによるABB BUSのフラッシュチャージング

付録2:IDTECHEXの出版物とコンサルティング

図表

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

Traditionally, rechargeable batteries have been used as energy dense products and the other devices based on capacitors have been used as power dense products. There are more-power-dense versions of the favourite rechargeable batteries - lithium-ion with 70% or so of the rechargeable battery market in 2023. Unfortunately, power dense rechargeable batteries surrender a lot of energy density. It is therefore helpful that more and more energy dense supercapacitors and variants are becoming available, some even matching lead acid batteries and yet retaining excellent power density. This convergence of properties has led to the widespread combination of the two in parallel, particularly in power applications. Battery/supercapacitor combinations approach the performance of an ideal battery - something that can never be achieved with a battery alone because its chemical reactions cause movement, swelling and eventually irreversability. In some cases, things have gone further. For example, hybrid buses using supercapacitors now rarely use them across the traction battery - the supercapacitor replaces the battery, the only battery remaining in the vehicle being a small lead-acid starter battery.

image1

Many more supercapacitor variants are now available. There is now almost a continuum of devices between conventional electrolytic capacitors and rechargeable batteries as we explain in the report. The analysis of 80 manufacturers and putative manufacturers reveals, for example, how battery manufacturers and conventional capacitor manufacturers are entering the business of devices intermediate between the two. However, rather surprisingly, most of the intermediate devices are developed and manufactured by companies not in either conventional capacitors or batteries. Although we use the term intermediate devices, some have some properties superior to both conventional capacitors and rechargeable batteries.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Supercapacitors and batteries converge
    • 1.1.1. Supercapacitors and Li-ion Batteries are one business
  • 1.2. Success by application and territory
  • 1.3. Technology road map 2015-2024
  • 1.4. The most important future technical advances commercially
  • 1.5. Most are chasing area improvement
  • 1.6. Even lower temperature
  • 1.7. Price and functional issues
  • 1.8. Supercapacitors increase range of electric vehicles
  • 1.9. Supercapacitors in vehicles
    • 1.9.1. Conventional vehicles
    • 1.9.2. Electric vehicles
  • 1.10. Incidence of the different technologies
    • 1.10.1. Incidence of manufacturers by operating principle
    • 1.10.2. Incidence of current collector and active electrode types
    • 1.10.3. Electrolytes
  • 1.11. Achieving the impossible
  • 1.12. Manufacturers and putative manufacturers
  • 1.13. New entrants
  • 1.14. Supercapacitors and lithium-ion batteries are now one business
  • 1.15. Change of leadership of the global value market?
  • 1.16. Supercapacitors grab the multibillion dollar electrolytic capacitor market
  • 1.17. Planned strategies for 2015-2025

2. INTRODUCTION

3. ADVANCES REQUIRED AND PROGRESS IDENTIFIED

  • 3.1. Supercapacitors in vehicles
  • 3.2. Ensuring that supercapacitors will replace more batteries

4. APPLICATIONS NOW AND IN THE FUTURE

  • 4.1. Pulse Power
  • 4.2. Bridge Power
  • 4.3. Main Power
  • 4.4. Memory Backup
    • 4.4.1. Evolution of commercially successful functions
    • 4.4.2. Composite structural and smart skin supercapacitors for power storage
  • 4.5. Manufacturer successes and strategies by application
  • 4.6. Supercapacitors increase range of electric vehicles

5. SURVEY OF 80 MANUFACTURERS

6. ACHIEVEMENTS AND OBJECTIVES BY MANUFACTURER

7. EXAMPLES OF PRE-COMMERCIAL DEVELOPMENT PROGRAMS

8. INTERVIEWS AND COMMENTARY ON COMPANY STRATEGY FOR SUPERCAPACITORS

  • 8.1. Lessons from the IDTechEx Supercapacitors event California November 2014
    • 8.1.1. Jostling for Leadership
    • 8.1.2. Supercapacitors: What Construction?
    • 8.1.3. Supercapacitors on the smaller scale
  • 8.2. Interviews with suppliers
    • 8.2.1. Cap-XX Australia
    • 8.2.2. Cellergy Israel
    • 8.2.3. East Penn Manufacturing USA
    • 8.2.4. Elton Super Capacitor Russian Federation
    • 8.2.5. Furukawa Battery Co Ltd. Japan
    • 8.2.6. Inmatech USA
    • 8.2.7. Ioxus USA
    • 8.2.8. JS Micro/ JS Radio/JM Energy Japan
    • 8.2.9. Nanotune Technologies USA
    • 8.2.10. NEC Tokin Japan
    • 8.2.11. Nesscap Energy Inc Canada/Korea
    • 8.2.12. Nichicon Japan
    • 8.2.13. Nippon ChemiCon/ United ChemiCon Japan
    • 8.2.14. Skeleton Technologies Estonia, Germany
    • 8.2.15. Yo-Engineering Russian Federation
    • 8.2.16. Yunasko Russian Federation
  • 8.3. User interviews and inputs
    • 8.3.1. Bombardier Canada
    • 8.3.2. Hydrogenics Corporation USA
    • 8.3.3. Honda Japan and Nippon Chemi-Con Japan
    • 8.3.4. Komatsu Japan
  • 8.4. New Supercapacitor Advances in Japan Oct 2014

9. DEVELOPER, MATERIALS SUPPLIER AND ACADEMIC INPUTS

  • 9.1. Daikin Industries Japan
  • 9.2. Hutchinson (TOTAL) France
  • 9.3. IFEVS Italy
  • 9.4. Northeastern University USA
  • 9.5. NYSERDA grants reveal trends of research
  • 9.6. Tecate Group USA
  • 9.7. Yuri Gogotski

10. COMPANY PROFILES

  • 10.1. Elbit Systems
  • 10.1. Aowei Technology
  • 10.2. Cap-XX
  • 10.2. ELTON
  • 10.3. Hutchinson SA
  • 10.3. Cellergy
  • 10.4. Ioxus
  • 10.5. Maxwell Technologies Inc
  • 10.6. Nesscap Energy
  • 10.7. Paper Battery Company
  • 10.8. Saft Batteries
  • 10.9. Skeleton Technologies
  • 10.10. WIMA Spezialvertrieb elektronischer Bauelemente
  • 10.11. Yunasko

APPENDIX 1: SUPERCAPACITOR FLASH CHARGING OF ABB BUS

APPENDIX 2: IDTECHEX RESEARCH REPORTS AND CONSULTANCY

TABLES

  • 1.1. Main achievements and objectives with supercapacitors and their derivatives by number of manufacturers and putative manufacturers involved
  • 1.2. 2014 output value forecast by manufacturer of supercapacitors and supercabatteries.
  • 1.3. Supercapacitor technology roadmap including lithium-ion capacitors (AEDLC) 2013-2024
  • 1.4. The ten advances that will create the largest add-on markets for supercapacitors and their derivatives in order of importance in creating market value with examples of organisations leading the advance
  • 1.5. 15 examples of component displacement by supercapacitors in 2012-3
  • 1.6. Supercapacitor functions reaching major market acceptance 2013-2023 with some of the companies leading the success by sector
  • 1.7. 80 manufacturers, putative manufacturers and commercial companies developing supercapacitors, supercabatteries and carbon-enhanced lead batteries for commercialisation with country, website and device technology.
  • 2.2. Some of the pros and cons of supercapacitors
  • 3.1. Advances that will create the largest add-on markets for supercapacitors and their derivatives by value in order of importance with examples of organisations leading the advance.
  • 3.2. Examples of component displacement by supercapacitors.
  • 4.1. Supercapacitor functions reaching major market acceptance 2013-2023 with some of the companies leading the success by sector
  • 5.1. 80 manufacturers, putative manufacturers and commercial companies developing supercapacitors, supercabatteries and carbon-enhanced lead batteries for commercialisation with country, website and device technology.
  • 6.1. By application, for Automotive, Aerospace, Military and Oil & Gas, the successes by 78 supercapacitor/supercabattery manufacturers in grey green and their targets for extra applications in the near term in yellow. Six sub categori
  • 6.2. The successes in six categories in the Utility sector by 78 supercapacitor/supercabattery manufacturers in grey green and their targets for extra applications in the near term in yellow
  • 6.3. The successes by 78 supercapacitor/supercabattery manufacturers in the Consumer and Industrial & Commercial beyond vehicles sectors in grey green and their targets for extra applications in the near term in yellow. Eight sub-categ
  • 7.1. Pre-commercial supercapacitor developers with their country, website, industrial partner, applications targeted

FIGURES

  • 1.1. Some of the options and some of the suppliers in the spectrum between conventional capacitors and rechargeable batteries with primary markets shown in yellow
  • 1.2. Examination of achievement and strategy in the most important applicational sectors. Number of manufacturers of supercapacitors and their variants that have that have supplied given sectors vs number that target them for future ex
  • 1.3. Probable timeline for market adoption by sector and technical achievements driving the growth of the market for supercapacitors and their derivatives 2014-2025 with market value projections for supercapacitors, cost and performanc
  • 1.4. Some of the main ways in which greater supercapacitor energy density is being sought by the route of increasing useful carbon area per unit volume or weight
  • 1.5. The main functions that supercapacitors will perform over the coming decade
  • 1.6. Examples of the main functions performed by supercapacitors
  • 1.7. Main functions performed by supercapacitors in electric vehicles
  • 1.8. The evolution from conventional to various types of electric vehicle related to supercapacitor applications in them today, where hybrids and pure electric versions are a primary target
  • 1.9. Possible timeframe and technology for reaching the tipping point for sales of pure electric on-road cars
  • 1.10. The number of manufacturers and putative manufacturers of supercapacitors/supercabatteries by six sub-categories of technology
  • 1.11. Incidence of manufacturers of various types of supercapacitor and variant by operating principle
  • 1.12. Component displacement mapped as a function of benefits relative to batteries conferred by supercapacitors
  • 1.13. Estimate of the number of trading manufacturers of supercapacitors and supercabatteries globally 1993-2025 including timing of industry shakeout.
  • 2.1. Types of capacitor
  • 2.2. Symmetric supercapacitor EDLC left compared with asymmetric AEDLC ie supercabattery with battery-like cathode (ie part electrochemical in action) shown right. During charge and discharge, the voltage is nearly constant resulting i
  • 2.3. Symmetric supercapacitor EDLC compared with asymmetric AEDLC ie supercabattery with lithiated carbon anode (ie entirely electrostatic in action) shown right
  • 2.4. Eight families of option and some of the suppliers in the spectrum between conventional capacitors and rechargeable batteries with primary markets shown in yellow
  • 3.1. The main functions that supercapacitors will perform over the coming decade
  • 3.2. Examples of the main functions performed by supercapacitors. Those in black are currently only achieved with a flammable, carcinogenic electrolyte - acrylonitrile - but this will change
  • 3.3. The evolution from conventional to various types of electric vehicle related to supercapacitor applications in them today, where hybrids and pure electric versions are a primary target.
  • 3.4. Possible timeframe and technology for reaching the tipping point for sales of pure electric on-road cars
  • 3.5. Component displacement mapped as a function of benefits relative to batteries conferred by supercapacitors
  • 3.6. Siemens view in 2012 of the elements of Electrical Bus Rapid Transit eBRT, for example, mentioning U-Caps meaning supercapacitors
  • 4.1. Examples of applications of the ULTIMO Cell
  • 4.2. Structural supercapacitor as flexible film.
  • 4.3. Primary demand for energy storage for battery-like products in Europe in 2020, which will be satisfied by batteries, supercapacitors, intermediate products and combinations of these
  • 4.4. East Penn Deca Ultra Battery in Honda hybrid car
  • 4.5. Heter Electronics supercapacitors from China
  • 5.1. Incidence of the different technologies
  • 5.2. Number of manufacturers offering the various supercapacitor technologies including derivatives, some companies having several options
  • 5.3. Estimate of the number of trading manufacturers of supercapacitors and supercabatteries globally 1993-2025 including timing of industry shakeout.
  • 8.1. Supercapacitor focus for small wearable healthcare devices
  • 8.2. UltrabatteryTM for medium hybrid vehicles
  • 8.3. Inmatech Innovations
  • 8.4. Supercapacitor market and Inmatech
  • 8.5. Nichicon supercapacitor emphasis at EVS26 Los Angeles 2012
  • 8.6. Supercapacitor-based electric vehicle fast charging stations launched in 2012 by Nichicon.
  • 8.7. Mazda car supercapacitor exhibited at EVS26 Los Angeles 2012
  • 8.8. Nippon Chemi-Con low resistance DXE Series priority shown in 2012
  • 8.9. Exhibit by United ChemiCon at EVS26 Los Angeles
  • 9.1. Daikin Industries display on fluorination of supercapacitor electrolytes
  • 9.2. Extracts from Hutchinson presentation at eCarTec Munich October 2012
Back to Top