表紙
市場調査レポート

3Dプリンティング材料 2015-2025年:現状、ビジネスチャンス、市場予測

3D Printing Materials 2016-2026: Status, Opportunities, Market Forecasts

発行 IDTechEx Ltd. 商品コード 288577
出版日 ページ情報 英文 131 Slides
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=101.51円で換算しております。
Back to Top
3Dプリンティング材料 2015-2025年:現状、ビジネスチャンス、市場予測 3D Printing Materials 2016-2026: Status, Opportunities, Market Forecasts
出版日: 2016年08月04日 ページ情報: 英文 131 Slides
概要

3Dプリンティング材料の市場規模は、2023年に3Dプリンター市場を上回り、2025年までに83億米ドルに達すると予測されています。

当レポートは、3Dプリンターで使用される各種の材料に注目し、今後の見通しを示したもので、感光性樹脂や熱可塑性樹脂、金属粉末、インクジェット用粉末材料のほか、現在開発中の材料も取り上げております。

第1章 エグゼクティブサマリー

第2章 イントロダクション

第3章 3Dプリントの主なメリット

  • 3Dプリントの主なメリット
  • 従来型の製造に適さないデザインの実例
  • マスカスタマイゼーションからメリットを受ける製品の実例

第4章 3Dプリント技術の概要

  • 技術レビュー
  • 熱可塑性樹脂成形
  • ステレオリソグラフィー(SLA)および光造形(DLP)
  • インクジェットフォトポリマー
  • プラスチック印刷のサマリー
  • SLS、SLMおよびEBM
  • ブロウンパウダー
  • 溶接
  • 金属印刷のサマリー
  • インクジェット結合剤

第5章 材料の概要

  • 材料のレビュー
  • フォトポリマー
  • 3Dプリントフォトポリマーの用途
  • アクリレートvs.エポキシ樹脂
  • フォトポリマーのサプライヤー
  • 市販フォトポリマーの特性
  • 熱可塑性フィラメント
  • 3Dプリント熱可塑性フィラメントの用途
  • 熱可塑性フィラメントのサプライヤー
  • 熱可塑性フィラメントのサプライヤーから入手可能なポリマー
  • 熱可塑性フィラメントで3Dプリントされた物体の特徴
  • 熱可塑性フィラメント調合剤の化学品サプライヤー
  • 熱可塑性パウダー
  • 3Dプリント熱可塑性粉末の用途
  • 熱可塑性粉末のサプライヤー
  • 熱可塑性粉末のサプライヤーが提供するポリマー
  • 3Dプリント熱可塑性粉末の比較
  • 金属粉末
  • 3Dプリント金属粉末の用途
  • 金属粉末のサプライヤー
  • 金属粉末サプライヤーから入手可能な合金
  • サンド・結合剤
  • 溶接用ワイヤー
  • 3Dプリント溶接用ワイヤーの用途

第6章 新しい材料

  • 概要
  • セラミックス
  • 炭素繊維
  • 導電性材料
  • シリコン
  • バイオマテリアル
  • レゴリス
  • グラフェン

第7章 ディスラプティブ技術

  • 熱可塑性樹脂のリサイクル
  • Metalysis
  • 選択的積層成形システム(SDL)
  • 磁気流体力学

第8章 特許・出版

第9章 市場

第10章 バリューチェーン

  • バリューネットワーク
  • 2つのバリューチェーン
  • 熱可塑性フィラメント消費の3つの動き
  • 価格
  • 価格動向
  • バリューチェーン図:金額ベース
  • バリューチェーン図:数量ベース

第11章 市場の現況

  • 市場の現況:金額ベース
  • 市場の現況:数量ベース
  • 材料売上の地域別内訳
  • データ
  • 調査手法・前提条件

第12章 予測

  • 3Dプリント産業全体
  • データ
  • 材料市場:材料別
  • 市場額のシェア:材料別
  • 材料市場の予測:材料別
  • 成長率:地域別
  • データ
  • 予測手法・前提条件

第13章 スケジュール

  • 新興企業、合併、吸収および撤退

第14章 制限事項・阻害要因

  • 現在の制限
  • その他技術との結びつき

第15章 3D材料サプライヤーのプロファイル

  • DSM
  • Rahn
  • Arevo
  • TLC Korea
  • Evonik
  • Exceltec
  • Oxford Perfomance Materials
  • Taulman 3D
  • Argen
  • Cookson Gold
  • LPW
  • Sandvik
  • Hoganas
  • CRP
  • Fripp Design

第16章 3Dプリントエンドユーザーのプロファイル

  • Lockheed Martin
  • Boeing
  • Ford
  • Dyson
  • GE Aviation
  • BMW
  • Reebok
  • Addenbrooke's Hospital

第17章 ビジネスチャンス

  • ビジネスチャンスのレビュー

第18章 企業プロファイル

  • 3D Ceram
  • 3D Systems Europe
  • Advanced Powders and Coatings
  • Arcam AB
  • Arevo Labs
  • Argen Corporation
  • Biobots
  • BotFactory
  • Canatu
  • Cookson Precious Metals
  • CRP Group
  • Dyson
  • EPSRC
  • Evonik
  • Fabrisonic LLC
  • Fripp Design Ltd
  • Graphene 3D Lab
  • Hoganas
  • Impossible Objects
  • Legor Group
  • Lomiko Metals
  • LPW Technology Ltd
  • LUXeXceL
  • The NanoSteel Company
  • NinjaFlex
  • Norsk Titanium
  • Orbital Composites
  • Oxford Performance Materials
  • Rahn AG
  • Sandvik
  • Solidscape
  • Stratasys Ltd.
  • Taulman3D
  • TLC Korea
  • Toner Plastics
  • Volvo Construction Equipment
  • Voxel8

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

The 3D Printing Materials market to overtake the 3D Printer market in 2021 and reach $9bn by 2026.

This report covers the current status and future opportunities of materials for 3D printing. It contains many illustrative and analytical figures and tables plus profiles of 29 companies, from across the globe, who supply a wide variety of materials for 3D printing.

Upon request the original PowerPoint can be included free of charge as part of the report purchase.

3D Printing Materials

Gone are the days of 3D Printing being synonymous with Rapid Prototyping; the days of Additive Manufacturing are here.

3D Printing was first commercialised in 1986, and adopted nearly exclusively for prototyping. In 2009, Stratasys' key patent expired, the market place became flooded with cheap thermoplastic extruders, interest exploded, and the market for thermoplastic filament rocketed. XYZPrinting have become a market leader by selling very large numbers of cheap printers. They operate on a vendor lock-in model, so their revenue from materials will be large and the price will hold steady. The market for thermoplastic filament is expected to reach over $6.6 billion by 2026.

This new interest inspired developments in many technologies to 3D print a wider variety of materials. A brief overview of each of these technologies is outlined in this report. This report outlines the advantages and disadvantages of printing in different materials, the applications of each, and technical data on the properties of 3D printed materials, which often differ from their traditionally manufactured analogue. These new materials mean there has been space for many new companies, and also many acquisitions by 3D printer manufacturers. Information on start-ups, closures, mergers and acquisitions is included.

No longer is 3D Printing used only for one-off pieces and prototypes, but for final part production of items with reduced and simplified assembly, quicker design iterations, greater design freedom, mass customisation and minimal material wastage. For these reasons, 3D Printing is already common in aerospace, orthopaedic, jewellery and dental sectors. Adoption is fast-growing in education, oil and gas, military, architecture, and medical research sectors.

This massive growth in the use and applications of 3D Printers is encouraging a massive growth in the market for 3D Printing Materials. Detailed forecasts, using information from interviews with 90 key players in the industry and disclosed financial information, estimate key materials are expected to have a total market of over $9B by 2026. This report includes detailed state of the market, in terms of market value and volume, for:

  • Photopolymers
  • Thermoplastic filaments
  • Thermoplastic powders
  • Metal powders

The value chain for 3D printing materials is complicated because several major industrial printer manufacturers engage in "vendor lock-in" in a way analogous to 2D printers, but cheaper 3D printers allow the purchase of free market materials. The chapter on the value chain clarifies the situation, and quantifies the markets at each stage of the chain. There are separate price projections and forecasts for these two approaches and for different end-user behaviours.

The report also includes discussions on developments for emerging materials including:

  • Welding Wire
  • Binders for metals, sand or plaster
  • Metallic thermoplastic filaments
  • Platinum-based Metallic Glass
  • Gallium-Indium Alloy
  • Ceramics
  • Biomaterials
  • Conductive thermoplastic filaments
  • Conductive inks
  • Conductive pastes
  • Conductive photopolymers
  • Graphene
  • Carbon Fibre
  • Silicone
  • Regolith
  • Wood
  • Glass

This report gives financial data and forecasts to 2026 including:

  • Revenue from 3D Printing Materials in 2015
  • Market Share by Material in 2015
  • 3D Printing Industry Split by Application
  • Forecast by Revenue
  • Forecast by Mass
  • Forecasts of Industry Split by Application

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY

  • 1.1. Advantages of 3D Printing
  • 1.2. Printing processes and material compatibility
  • 1.3. Future of 3D printing by application
  • 1.4. The Two Value Chains
  • 1.5. Revenue from 3D Printing Materials in 2015
  • 1.6. Market Share in 2015
  • 1.7. Forecast by Revenue
  • 1.8. Forecast by mass

2. INTRODUCTION

  • 2.1. 3D Printing is...
  • 2.2. Advantages of 3D Printing
  • 2.3. The cost of complexity
  • 2.4. Drivers
  • 2.5. A brief history of 3D printing
  • 2.6. Company Start Dates
  • 2.7. Fully Digital Work-flow

3. OVERVIEW OF 3D PRINTING TECHNOLOGIES

  • 3.1. Printing processes and material compatibility
  • 3.2. Alternative Naming of Technologies
  • 3.3. Summary of Plastic Printing
  • 3.4. Summary of Metal Printing

4. PHOTOPOLYMERS

  • 4.1. Photopolymers
  • 4.2. Acrylates vs Epoxies
  • 4.3. Applications of 3D Printed Photopolymers
  • 4.4. Photopolymers - Key Players
  • 4.5. Properties of Commercially Available Photopolymers
  • 4.6. Forecast for Photopolymers

5. THERMOPLASTIC FILAMENT

  • 5.1. Thermoplastic Filament
  • 5.2. Available Polymers
  • 5.3. Why isn't PP commonly 3D printed?
  • 5.4. New fillers for thermoplastic filaments
  • 5.5. Elastomeric Filaments
  • 5.6. Applications of 3D Printed Thermoplastic Filament
  • 5.7. Thermoplastic Filament - Key Players
  • 5.8. Thermoplastic Filament - Chemical Suppliers
  • 5.9. Properties of Objects 3D Printed from Thermoplastic Filament
  • 5.10. Forecast Thermoplastic Filament Sales
  • 5.11. Forecast for Photopolymers

6. THERMOPLASTIC POWDER

  • 6.1. Thermoplastic Powders
  • 6.2. Applications of 3D Printed Thermoplastic Powders
  • 6.3. Thermoplastic Powders - Key Players
  • 6.4. Polymers Offered by Thermoplastic Powders Suppliers
  • 6.5. Comparison of two most commonly 3D Printed Thermoplastic Powders
  • 6.6. SLS of TPU
  • 6.7. Forecast of Thermoplastic Powders

7. METAL POWDERS

  • 7.1. Metal Powders
  • 7.2. 3D Printable Metals
  • 7.3. Powder Requirements
  • 7.4. Metal Powders - Key Players
  • 7.5. Alloys Available from Metal Powder Suppliers
  • 7.6. Applications of 3D Printed Metal Powders
  • 7.7. Powders for Metal + Binder
  • 7.8. Forecast for Metal Powders

8. OTHER WAYS TO 3D PRINT METALS

  • 8.1. Welding Wire
  • 8.2. Sand + Binder
  • 8.3. Proto-pasta Metallic PLA Filament
  • 8.4. Platinum-based Metallic Glass
  • 8.5. Gallium-Indium Alloy

9. CERAMICS

  • 9.1. SLA
  • 9.2. Paste extrusion
  • 9.3. Filled Thermoplastic Filaments
  • 9.4. Binder Jetting
  • 9.5. SLM
  • 9.6. Blown Powder

10. BIOMATERIALS

  • 10.1. Market
  • 10.2. Syringe-based bioprinting
  • 10.3. Extrusion-based bioprinting
  • 10.4. ROKIT - Edison Invivo 3D bioprinter
  • 10.5. Organovo

11. CONDUCTIVE MATERIALS

  • 11.1. Electrically Conducting Materials
  • 11.2. Functional materials
  • 11.3. Metals
  • 11.4. Conductive thermoplastic filaments
  • 11.5. Conductive inks
  • 11.6. Conductive pastes
  • 11.7. Conductive photopolymers
  • 11.8. Graphene

12. EMERGING MATERIALS

  • 12.1. Carbon Fibre
  • 12.2. Silicone
  • 12.3. Regolith
  • 12.4. Wood
  • 12.5. Glass

13. DISRUPTIVE TECHNOLOGIES

  • 13.1. Thermoplastic Recycling
  • 13.2. Selective Deposition Lamination
  • 13.3. Faster vat photopolymerisation
  • 13.4. LCD stereolithography 3D Printing

14. MARKETS

  • 14.1. Markets for 3D Printing
  • 14.2. Future of 3D printing by application

15. VALUE CHAINS

  • 15.1. Value Network
  • 15.2. The Two Value Chains
  • 15.3. Value Chain Split
  • 15.4. Three Behaviours of Thermoplastic Filament Consumption
  • 15.5. Falling prices for free-market materials

16. STATE OF THE MARKET

  • 16.1. Revenue from 3D Printing Materials in 2015
  • 16.2. Market Share in 2015
  • 16.3. 3D Printing Industry Split by Application
  • 16.4. Methods and Assumptions of State of Market Data
  • 16.5. Methods and Assumptions of the Forecast

17. FORECASTS

  • 17.1. Forecast by Revenue
  • 17.2. Forecast by mass
  • 17.3. Forecasts of Industry Split by Application

18. CONCLUSIONS

  • 18.1. General trends
  • 18.2. Limitations
  • 18.3. The evolution of 3D Printing is intrinsically linked with:
  • 18.4. Opportunities

19. COMPANY PROFILES

  • 19.1. Advanc3d Materials
  • 19.2. Advanced Powders and Coatings
  • 19.3. Arcam
  • 19.4. Arevo Labs
  • 19.5. Cookson Precious Metals
  • 19.6. CRP Group
  • 19.7. DSM Somos
  • 19.8. Evonik
  • 19.9. Exceltec
  • 19.10. Formlabs
  • 19.11. Graphene 3D Lab
  • 19.12. Heraeus - 3D printing metals
  • 19.13. Impossible Objects
  • 19.14. Legor Group
  • 19.15. Lomiko Metals
  • 19.16. LPW Technology Ltd
  • 19.17. Maker Juice
  • 19.18. NanoSteel
  • 19.19. Nascent Objects, Inc
  • 19.20. NinjaFlex
  • 19.21. Norsk Titanium
  • 19.22. Oxford Performance Materials
  • 19.23. Photocentric
  • 19.24. Rahn AG
  • 19.25. Sandvik
  • 19.26. Stratasys Ltd.
Back to Top