表紙
市場調査レポート

スマートパッケージの実用化:エレクトロニクスを利用したブランドイメージの強化

Smart Packaging Comes To Market: Brand Enhancement with Electronics 2014-2024

発行 IDTechEx Ltd. 商品コード 260725
出版日 ページ情報 英文 286 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=101.51円で換算しております。
Back to Top
スマートパッケージの実用化:エレクトロニクスを利用したブランドイメージの強化 Smart Packaging Comes To Market: Brand Enhancement with Electronics 2014-2024
出版日: 2014年03月01日 ページ情報: 英文 286 Pages
概要

エレクトロニクス技術は、すでにさまざまな商品のパッケージに利用されており、ウィンクするラム酒のボトルや声の出るピザボックス、電荷を帯びた殺虫剤を噴射するエアロゾル、服用量と服用時間を記録することができる医薬品の容器、ユーザーの側で変更可能な携帯電話のデコレーションなど、多種多様なものが登場しています。また、こうしたパッケージを実現するプリンテッドエレクトロニクス技術には、コストを半分近く削減できるという利点もあります。このため、有名ブランドを抱える企業の多くは、紙と同じ厚さの量産品に使用可能なエレクトロニクスパッケージを開発することで、消費者の利便性を高め、競合他社をリードしようとしています。今後10年間で、電子的なスマートパッケージの市場規模は14億5000万米ドル以上にまで拡大する、と予想されています。

当レポートは、エレクトロニクス技術を利用したスマートパッケージデバイスの世界市場における需要動向を分析し、今後の見通しを示したもので、スマートパッケージの普及を促す要因や市場の成長を阻害する要因、各種パッケージの実例、各種の関連技術に加え、主要企業各社のプロファイルも盛り込み、概略下記の構成でお届けいたします。

第1章 エグゼクティブサマリーと結論

  • データの検証
  • 市場下位区分の融合
  • 市場拡大のペースが上がらない理由
  • 市場の成長促進要因
  • 新たな部品と独創的なデザイン
  • 新たな技術、事業促進要因と洞察
  • 市場の背景
  • エンドユーザーへのインタビューからのフィードバック

第2章 イントロダクション

  • パッケージのタイプ
  • 進化が加速している原因
  • 基本的なハードウェアプラットフォームの重要性
  • 電子パッケージの実用化が遅れた原因

第3章 スマートパッケージに関する、エンドユーザーへのインタビューとフィードバック

  • 市場促進要因
  • エンドユーザーの見解:アプリケーションのニーズ
  • エンドユーザーの見解:技術的ニーズ

第4章 エレクトロニクスパッケージのニーズ

  • 安全性
  • セキュリティと防犯対策
  • 独自性/製品の差別化
  • 利便性
  • 追加機能によるブランドの強化
  • 宣伝効果による売上増
  • エンターテインメント
  • 誤用防止
  • 廃棄時の環境面の課題
  • パッケージ内の環境品質管理
  • 品質保証
  • 顧客からのフィードバック
  • 面倒な手順の省略
  • コスト削減、効率化、自動データ収集

第5章 実用化されつつある技術

  • トッパンフォームズの新たなプリンテッドエレクトロニクス製品
  • ソーラーバッグ
  • スマート基板
  • 透明・不可視のエレクトロニクス製品
  • 巻き取り可能なエレクトロニクス製品
  • 伸縮・変形可能なエレクトロニクス製品
  • 食用エレクトロニクス製品
  • エレクトロニクスを用いた芸術
  • 電子折り紙
  • 配送機構として機能するパッケージ
  • 電子投薬、消費者情報

第6章 市場が求める基本的なハードウェアプラットフォーム

  • ウィンクするラベル
  • 声の出るラベル
  • 録音可能なラベル
  • テキストがスクロールするラベル
  • タイマー
  • 使用期限自動調整機能
  • その他のセンサーエレクトロニクス
  • 動くカラーラベル
  • 薬や化粧品の配送システム
  • 超低価格のプリンテッドRFID/EAS(万引き防止)ラベル

第7章 今後実現すると思われる電子パッケージ技術

  • 実用化間近の技術
  • T-Inkの技術

第8章 エレクトロニクスパッケージの実例

  • ヒューマンインタフェースを搭載したエレクトロニクスパッケージ(全26件)
  • ヒューマンインタフェースを搭載しないエレクトロニクスパッケージ(全12件)

第10章 エレクトロニクスパッケージ用電子部品

  • 従来型部品の課題
  • プリンテッドエレクトロニクスおよび実現可能なプリンテッドエレクトロニクス
  • 紙製基板とプラスチック製基板、およびパッケージへの直接印刷
  • 無機トランジスターとメモリー
  • 有機トランジスターとメモリー
  • ディスプレイ
  • パッケージ用エネルギーハーベスティング技術
  • 電池
  • 透明電池と太陽光発電:日本電気・早稲田大学・産業技術総合研究所(AIST)
  • 製品化されている他の重要なフレキシブル部品
  • 新たなタイプの部品:薄くフレキシブルな製品

第10章 スマートパッケージにおけるNFC

  • NFC(近距離無線通信)の背景事情
  • 主な導入傾向
  • 結論:パッケージングにおけるNFC

第11章 主なサプライヤーと開発企業のプロファイル(全32社)

第12章 市場予測

  • プリンテッドエレクトロニクスの普及見通し
  • 低価格電子製品での普及の驚くべき遅さ
  • 究極的な潜在的市場
  • eパッケージング市場の将来展望
  • ブランド強化のさらに先へ
  • プリンテッドエレクトロニクス市場
  • 小型デバイス向け電池市場
  • プリンテッドエレクトロニクス向けの新たなデザインルールの必要性
  • バリューチェーンの発達の不均衡

付録1:用語集

付録2:IDTECHEXの調査レポート・コンサルティングサービス

図表

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

"The global demand for electronic smart packaging will grow to over $1.45 billion in the next decade."

Electronics and electrics are already used in packaging, from winking rum bottles and talking pizza boxes to aerosols that emit electrically charged insecticide that chases the bug. Electronic medication packs record how much is taken and when and prompts the user. Reprogrammable phone decoration has arrived. But that is just a warm up. The key enabling technology - printed electronics - often used with other conventional electronics - can make new packaging and product features feasible. Consequently, many leading brand owners have recently put multidisciplinary teams onto the adoption of the new paper thin electronics on their high volume packaging. It will provide a host of consumer benefits and make competition look very tired indeed. This is mainly about modern merchandising - progressing way beyond static print - and dramatically better consumer propositions.

Consumer goods market for e-packaging devices in millions of units*

*For the full forecast data please purchase this report
Source: IDTechEx

This report reveals the global demand for electronic smart packaging devices is currently at a tipping point and will grow rapidly to $1.45 billion within 10 years. The electronic packaging (e-packaging) market will remain primarily in consumer packaged goods (CPG) reaching 14.5 billion units that have electronic functionality within a decade.

E-packaging addresses the need for brands to reconnect with the customer or face oblivion from copying. That even applies to retailer own brands. It addresses the ageing population's consequent need for disposable medical testers and drug delivery devices. Electronic packaging addresses the fact that one third of us have difficulty reading ever smaller instructions.

Main drivers of the rapid growth

The rapid growth will be driven by trials now being carried out by leading CPG companies and the rapid technical developments emanating for over 3000 organisations, half of them academic, that are currently working on printed and potentially printed electronics.

The six main factors driving the rapid growth of electronic smart packaging are:

  • Ageing population
  • Consumers are more demanding
  • Consumers are more wealthy
  • Changing lifestyles
  • Tougher legislation
  • Concern about crime and the new terrorism

There will also be growth from existing applications such as talking pizza boxes, winking logos on multipacks of biscuits and bottles of rum, compliance monitoring blisterpacks in drug trials, prompting plastic bottles of drugs that prompt the user, testers on batteries and reprogrammable decoration on mobile phones. However, IDTechEx's projected adoption only represents a few percent of CPG packages being fitted with these devices in 2024.

There are still many challenges to be addressed, including creating sustainable e-packaging products rather than one-off projects. Cost and lack of integrators and complete product designers are current limitations.

All of these trends, including detailed ten year forecasts, are covered in this IDTechEx report "Smart Packaging Comes To Market: Brand Enhancement with Electronics 2014-2024". The report reveals many ways in which brands can create a sharp increase in market share, customer satisfaction and profitability. It covers case studies of successes and failures and why.

To gain very high volume, and therefore lowest costs, by selling across all industries, basic hardware platforms such as the very low cost talking label must be developed. These are discussed. The detailed market forecasts, statistics for associated industries, pros and cons, technology choices and lessons of success and failure provide a lucid, compact analysis for the busy executive. There is much for both non-technical and technical readers.

Forecasts are given in terms of number of units and total market value for each of the following:

  • Winking and decal refers to labels that wink an image on and off and reprogrammable decoration on mobile phones etc
  • Scrolling and page turn refers to text and graphics accessed by scrolling or page turning
  • Audio and timer refers to voice, music or alert sounds including those produced by timers or sensors
  • Status refers to visible indication of status as with the tester on a battery case and an indication of how much is left in an aerosol can
  • Other CPG
  • EAS (electronic article surveillance)
  • RFID drugs, postal, retail cases
  • RFID retail primary packs/item level
  • The impact of NFC on packaging

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Benchmarking validation of figures
  • 1.2. Market sub sectors merge
    • 1.2.1. EAS and RFID
    • 1.2.2. NFC in Smart Packaging
  • 1.3. Reasons for the slow start
    • 1.3.1. Unbalanced supply chain
    • 1.3.2. Many examples of e-packaging
    • 1.3.3. Little market pull
    • 1.3.4. Tipping point
    • 1.3.5. P&G and printed electronics
    • 1.3.6. Using more of the human senses and in a better way
    • 1.3.7. Reusable electronic packaging
    • 1.3.8. Major adoption is certain now
    • 1.3.9. The forthcoming e-Label
    • 1.3.10. Technology push
  • 1.4. Market drivers
    • 1.4.1. Two routes for e-packaging
    • 1.4.2. Price sensitivity
    • 1.4.3. Basic hardware platforms are essential to achieve volume
  • 1.5. New components and creative design
    • 1.5.1. New design paradigms
    • 1.5.2. Electronic graphic design
    • 1.5.3. Diageo needs
  • 1.6. Emerging Technologies, Business Drivers and Insights
    • 1.6.1. Displays
    • 1.6.2. Power
    • 1.6.3. Other components: Logic, sensors, conductive ink
  • 1.7. Market Background
  • 1.8. Feedback from Interviews with End Users

2. INTRODUCTION

  • 2.1. Types of packaging
    • 2.1.1. Demographic timebomb
  • 2.2. Why progress is now much faster
    • 2.2.1. Using the nine human senses
    • 2.2.2. AstraZeneca Diprivan chipless RFID
  • 2.3. Why basic hardware platforms are essential
    • 2.3.1. Argument for printing standard circuits
    • 2.3.2. Touch and hearing
    • 2.3.3. Smell
  • 2.4. Why e-packaging has been slow to appear
    • 2.4.1. Inadequate market research
    • 2.4.2. Lack of market pull
    • 2.4.3. Wrong priorities by developers - engineering led design
    • 2.4.4. Inadequate cost reduction
    • 2.4.5. Odd inventions not economy of scale/hardware platforms
    • 2.4.6. Failure to solve technical problems
    • 2.4.7. Legal constraints
    • 2.4.8. Lessons from brand enhancement of cars using printed electronics

3. END USER INTERVIEWS AND FEEDBACK ON SMART PACKAGING

  • 3.1. Drivers
  • 3.2. End User Views - Application Needs
  • 3.3. End User Views - Technical Needs

4. THE NEED FOR ELECTRONICS IN PACKAGING

  • 4.1. Safety
  • 4.2. Security and reducing crime
  • 4.3. Uniqueness/ product differentiation
  • 4.4. Convenience
  • 4.5. Leveraging the brand with extra functions, brand enhancement
  • 4.6. Merchandising and increasing sales
    • 4.6.1. Attracting attention
    • 4.6.2. Rewards
  • 4.7. Entertainment
    • 4.7.1. Touchcode
  • 4.8. Error Prevention
  • 4.9. Environmental aspects of disposal
  • 4.10. Environmental quality control within the package
  • 4.11. Quality Assurance
  • 4.12. Consumer feedback
  • 4.13. Removing tedious procedures
  • 4.14. Cost reduction, efficiency and automated data collection

5. THE MAGIC THAT IS BECOMING POSSIBLE

  • 5.1. Printed electronics products from Toppan Forms
  • 5.2. Solar bags
  • 5.3. Smart substrates
  • 5.4. Transparent and invisible electronics
  • 5.5. Tightly rollable electronics
    • 5.5.1. Fault tolerant electronics
  • 5.6. Stretchable and morphing electronics
  • 5.7. Edible electronics
  • 5.8. Electronics as art
  • 5.9. Origami electronics
  • 5.10. The package becomes the delivery mechanism
  • 5.11. Electronic release, dispensing and consumer information

6. BASIC HARDWARE PLATFORMS NEEDED BY THE MARKET

  • 6.1. Winking image label
  • 6.2. Talking label
  • 6.3. Recording talking label
  • 6.4. Scrolling text label
  • 6.5. Timer
  • 6.6. Self adjusting use by date
  • 6.7. Other sensing electronics
  • 6.8. Moving color picture label
  • 6.9. Drug and cosmetic delivery system
  • 6.10. Ultra low cost printed RFID/EAS label

7. PRECURSORS OF IMPENDING E-PACKAGING CAPABILITIES

  • 7.1. Coming down market
  • 7.2. T-Ink and all the senses

8. EXAMPLES OF E-PACKAGING

  • 8.1. Examples of e-packaging and related uses with human interface
    • 8.1.1. Bombay Sapphire pack
    • 8.1.2. Printed electronics magazine cover - Blue Spark, NTERA, CalPoly, SiCal, Canvas and Ricoh
    • 8.1.3. Printed electronic greeting cards - Tigerprint, PragmatIC, and Novalia
    • 8.1.4. Cigarettes scrolling display - Kent
    • 8.1.5. Talking pill compliance kit - MeadWestvaco
    • 8.1.6. Monochrome reprogrammable phone decoration - Hitachi
    • 8.1.7. Color reprogrammable phone decoration - Hewlett Packard and Kent Display
    • 8.1.8. Rum winking segments - Coyopa
    • 8.1.9. Talking pizza boxes - National Football League and Mangia Media
    • 8.1.10. Batteries with integral battery tester - Duracell
    • 8.1.11. Point of Sale Material - News Corporation and T-Ink
    • 8.1.12. Place mats - McDonalds
    • 8.1.13. Animation and sound - Westpoint Stevens
    • 8.1.14. Board games become animated - Hasbro and Character Visions
    • 8.1.15. Interactive tablecloth - Hallmark
    • 8.1.16. Compliance monitoring blisterpack - National Institutes of Health/Fisher Scientific
    • 8.1.17. Compliance monitoring blisterpack laminate - Novartis/Compliers Group/DCM
    • 8.1.18. Smart blisterpack dispenser - Bang & Olufsen Medicom
    • 8.1.19. Winking sign - ACREO
    • 8.1.20. Compliance monitoring plastic bottle - Aardex
    • 8.1.21. Talking medicine - CVS and other US pharmacies
    • 8.1.22. Talking prizes - Coca-Cola
    • 8.1.23. Beer package game - VTT Technology
    • 8.1.24. Electronic cosmetic pack - Procter and Gamble
    • 8.1.25. Cookie heater pack - T-Ink
    • 8.1.26. Sata Airlines - Ynvisible
  • 8.2. Examples of e-packaging without human interface
    • 8.2.1. Time temperature label - Findus Bioett
    • 8.2.2. Anti-theft - Wal-Mart/Tyco ADT
    • 8.2.3. Time temperature recorders - Healthcare shippers/KSW Microtec
    • 8.2.4. Fly seeking spray - Reckitt Benkiser
    • 8.2.5. RFID for tracking - Tesco & Metro/Alien Technology
    • 8.2.6. Blisterpack with electronic feedback buttons - Kuopio University Hospital
    • 8.2.7. Trizivir - AstraZeneca
    • 8.2.8. Oxycontin - Purdue Pharma
    • 8.2.9. Viagra - Pfizer
    • 8.2.10. Theft detection - Swedish Postal Service and Deutsche Post
    • 8.2.11. Blood - Massachusetts General Hospital
    • 8.2.12. Real time locating systems - Jackson Healthcare Hospitals/Awarepoint

9. THE TOOLKIT OF ELECTRONIC COMPONENTS FOR E-PACKAGING

  • 9.1. Challenges of traditional components
  • 9.2. Printed and potentially printed electronics
    • 9.2.1. Successes so far
    • 9.2.2. Materials employed
    • 9.2.3. Printing technology employed
    • 9.2.4. Multiple film then components printed on top of each other
  • 9.3. Paper vs plastic substrates vs direct printing onto packaging
    • 9.3.1. Paper vs plastic substrates
    • 9.3.2. Electronic displays that can be printed on any surface
  • 9.4. Transistors and memory inorganic
    • 9.4.1. Nanosilicon ink
    • 9.4.2. Zinc oxide based ink
  • 9.5. Transistors and memory organic
  • 9.6. Displays
    • 9.6.1. Electrophoretic
    • 9.6.2. Thermochromic
    • 9.6.3. Electrochromic
    • 9.6.4. Printed LCD
    • 9.6.5. OLED
    • 9.6.6. Electrowetting
  • 9.7. Energy harvesting for packaging
    • 9.7.1. Photovoltaics
    • 9.7.2. Other
  • 9.8. Batteries
    • 9.8.1. Single use laminar batteries
    • 9.8.2. Rechargeable laminar batteries
    • 9.8.3. New shapes - laminar and flexible batteries
  • 9.9. Transparent batteries and photovoltaics - NEC, Waseda University, AIST
  • 9.10. Other important flexible components now available
    • 9.10.1. Capacitors and supercapacitors
    • 9.10.2. Applications for supercapacitors
    • 9.10.3. Resistors
    • 9.10.4. Conductive patterns for antennas, identification, keyboards etc.
    • 9.10.5. Programming at manufacturer, purchaser or end user
  • 9.11. New types of component - thin and flexible
    • 9.11.1. Memristors
    • 9.11.2. Metamaterials
    • 9.11.3. Thin film lasers, supercabatteries, fuel cells

10. NFC IN SMART PACKAGING

  • 10.1. NFC background
    • 10.1.1. 2010 Turning Point
    • 10.1.2. The biggest but least used RFID network today
    • 10.1.3. Beyond payments and transit
  • 10.2. Key adoption factors
    • 10.2.1. Technologies to address challenges
  • 10.3. Conclusions: NFC in Packaging

11. SUPPLIER AND DEVELOPER PROFILES

  • 11.1. ACREO, Sweden
  • 11.2. BASF, Germany
  • 11.3. Blue Spark Technologies, USA
  • 11.4. Canatu, Finland
  • 11.5. CapXX, Australia
  • 11.6. Cymbet, USA
  • 11.7. E-Ink
  • 11.8. Enfucell, Finland
  • 11.9. Excellatron, USA
  • 11.10. Fraunhofer Institute for Electronic Nano Systems (ENAS), Germany
  • 11.11. Front Edge Technology, USA
  • 11.12. Holst Centre, Netherlands
  • 11.13. Infinite Power Solutions USA
  • 11.14. Infratab, USA
  • 11.15. Institute of Bioengineering and Nanotechnology (A*Star), Singapore
  • 11.16. ISORG, France
  • 11.17. Kovio, USA
  • 11.18. Massachusetts Institute of Technology USA
  • 11.19. MWV, USA
  • 11.20. NEC, Japan
  • 11.21. New University of Lisbon, Portugal
  • 11.22. Novalia, UK
  • 11.23. Plastic Logic, UK
  • 11.24. PolyIC, Germany
  • 11.25. PragmatIC Printing, UK
  • 11.26. Printechnologics, Germany
  • 11.27. PST Sensor, South Africa
  • 11.28. Solarmer, USA
  • 11.29. Soligie, USA
  • 11.30. Thin Film Electronics, Norway
  • 11.31. T-Ink
  • 11.32. VTT, Finland

12. MARKET FORECASTS 2014-2024

  • 12.1. How printed electronics is being applied
  • 12.2. Surprisingly poor progress with low cost electronics so far
  • 12.3. Ultimate market potential
  • 12.4. E-packaging market 2014-2024
  • 12.5. Beyond brand enhancement
  • 12.6. Printed electronics market
  • 12.7. Battery market for small devices
  • 12.8. Printed electronics needs new design rules
  • 12.9. The emerging value chain is unbalanced

APPENDIX 1: GLOSSARY

APPENDIX 2: IDTECHEX PUBLICATIONS AND CONSULTANCY

TABLES

  • 1.1. Total market for e-packaging devices 2014-2024 in millions of units, unit value and total value
  • 1.2. Consumer goods market for e-packaging 2014-2024, in millions of units
  • 1.3. Global market for electronic smart packaging based on EAS or RFID in millions of units 2014-2024
  • 1.4. Potential use of packages in exploiting and mimicking human senses
  • 1.5. Main factors driving the rapid growth of electronic smart packaging
  • 2.1. Potential use of packages in exploiting and mimicking human senses.
  • 8.1. Bioett first customers
  • 9.1. Advantages and disadvantages of some options for supplying electricity to small devices
  • 9.2. Comparison of flexible photovoltaics technologies suitable for brand enhancement
  • 9.3. Comparison of the three types of capacitor when storing one kilojoule of energy
  • 9.4. Examples of energy density figures for batteries, supercapacitors and other energy sources
  • 9.5. Where supercapacitors fit in
  • 11.2. T-Ink Key Metrics
  • 12.1. Consumer goods market for e-packaging 2014-2024, in millions of units
  • 12.2. Global market for electronic smart packaging based on EAS or RFID in millions of units 2014-2024
  • 12.3. Split of small device battery market in 2011 by type, giving number, unit value, total value

FIGURES

  • 1.1. Total market for e-packaging devices 2014-2024 in millions of units, unit value and total value
  • 1.2. Consumer goods market for e-packaging devices 2014-2024 in millions of units
  • 1.3. Global market for electronic smart packaging based on EAS and RFID in millions of units 2014-2024
  • 1.4. Unbalanced supply chain for printed electronics
  • 1.5. Ultimate Smart Packaging
  • 1.6. Toppan Forms Audio Paper
  • 1.7. T-Ink electronic graphic design elements - some examples.
  • 1.8. Diageo needs for printed electronics
  • 1.9. Global electrophoretic e-readers sales (in million units)
  • 1.10. Examples of printed electronics creating new products
  • 2.1. Dependent elderly as percentage of total population
  • 2.2. Objectives of the EC Sustainpack project
  • 2.3. Paper food package with printed touch sensor and animated display with sound playback produced under the Sustainpack project
  • 2.4. Diprivan® TCI tag construction
  • 2.5. Tagged syringe and Diprifusor™
  • 2.6. Learning from experience with the silicon chip
  • 2.7. How printed standard platforms will progress
  • 2.8. Progress towards labels with many components printed on top of each other to provide multiple functionality such as the detergent that has sound and a winking logo
  • 2.9. Interactive paper
  • 2.10. Touch-sensor pads and wiring printed in interactive paper
  • 2.11. Experimental set up and demonstration
  • 2.12. Pressure sensitive film used in smart blisterpack by Plastic Electronic
  • 2.13. Some successes with packaging electronics that does not employ transistors
  • 2.14. Fully printed passive RFID, HurraFussball card bottom right
  • 2.15. Talking/ recording circuit as used in pizza boxes and gift cards, including Hallmark
  • 2.16. Talking circuit as used in pizza boxes and gift cards
  • 2.17. Hybrid devices used in packages, where the use of non-printing processes, silicon chips and some conventional components limits their success due to price, weight and size
  • 2.18. Remotely powered displays that could be used in packaging but a fully printed construction for the power supply not just the display is desirable for high volume use
  • 2.19. Box of cereal with moving colour displays as envisaged in "Minority Report"
  • 2.20. T-Ink ceiling cluster as used in the Ford Fusion car update from 2012
  • 4.1. CDT arguments for printed OLEDs
  • 4.2. Interactive shelf-package concept
  • 4.3. Concept of a disposable pack that can project a moving colour image onto a wall
  • 4.4. Speaking pot noodle that detects the hot water being applied and then monitors temperature or time
  • 4.5. Toppan Forms smart shop
  • 4.6. Concept of a valuable packaging tearoff
  • 4.7. Touchcode application examples
  • 5.1. Card with no battery, the image being illuminated by RF power from an RFID reader
  • 5.2. Flashing flexible OLED display at point of purchase POP
  • 5.3. Light emitting business card with images that light up sequentially
  • 5.4. Solar powered photo stand
  • 5.5. Flat sheet type of charger that is flexible
  • 5.6. OLED posters powered by flexible photovoltaics
  • 5.7. Light emitting display with audio all powered by ambient light
  • 5.8. Poster with electrophoretic display counting down to the arrival date of Beaujolais Nouveau
  • 5.9. Poster combining flashing LED with Toppan Forms Audio PaperTM sound
  • 5.10. Battery charging brief case with organic flexible photovoltaic panel
  • 5.11. Neuber's solar bag
  • 5.12. Lamborghini solar bag
  • 5.13. Mascotte DSSC solar bag
  • 5.14. Odersun solar bag
  • 5.15. Transparent electronics - a new packaging paradigm
  • 5.16. Stretchable electronics developed at Cambridge University UK
  • 5.17. Stretchable mesh of transistors connected by elastic conductors that were made at the University of Tokyo
  • 5.18. Reshaped electronics developed at Cambridge University UK
  • 5.19. Origami electronics
  • 5.20. eFlow nebuliser as used by AstraZeneca - a candidate for cost reduction to the point where it is disposable and comes with the drug inside
  • 6.1. Ink in Motion
  • 6.2. Voice recording gift tag by Talking Tags
  • 6.3. Concept of a drug container that prompts
  • 6.4. Concept of a voice recording gift pack
  • 6.5. Manually activated disposable paper timer for packaging
  • 6.6. Concept of an electronic package that has a blinking display and various safety sensors
  • 6.7. Concept of packaging preventing a health risk
  • 6.8. Electronic printed pain relief patch electronically delivering painkiller
  • 7.1. Examples of electronic devices coming down market with packaging a next possibility
  • 8.1. Bombay Sapphire with an EL display
  • 8.2. Scrolling display on Kent cigarettes
  • 8.3. Reprogrammable electrophoretic decoration on Hitachi mobile phones only needs power when being changed
  • 8.4. Reprogrammable color display on phone
  • 8.5. Duracell batteries/Avery Dennison tester
  • 8.6. National Institutes of Health/Fisher Scientific compliance monitoring blisterpack for Azithromycin trials, made by Information Mediary
  • 8.7. Compliers Group/ DCM compliance monitoring blisterpack overlay with RFID
  • 8.8. Bang & Olufsen Medicom compliance monitoring dispenser
  • 8.9. Aardex electronic plastic bottle for drug tablets
  • 8.10. Pill bottle with smart label (printed prescription label not shown)
  • 8.11. ScripTalk speaker
  • 8.12. VTT Technology beer package game
  • 8.13. Electrostatic cosmetic spray
  • 8.14. The ionisation technology used for the application of the foundation
  • 8.15. Bioett biosensor TTR
  • 8.16. Electrostatic insect-seeking fly spray in use
  • 8.17. Can of insect-seeking fly spray
  • 8.18. Knockdown efficiency of SmartSeeker®
  • 8.19. Compliance monitoring blisterpack with electronic feedback
  • 8.20. Tamper recording postal package
  • 8.21. Paling Risk Scale for major transfusion hazards
  • 8.22. SHOT project: cumulative data 1996 to 2001
  • 8.23. Increasing errors within hospitals
  • 8.24. Safe transfusion: Processes not just product
  • 8.25. Automated warning generated when a possible mis-match of blood and patient occurs
  • 8.26. RFID on blood container, next to interrogator
  • 8.27. Blood labelled with RFID chip
  • 9.1. Evolution of printed electronics geometry
  • 9.2. Multilayer interconnect development at Holst Research Centre
  • 9.3. Categories of organic semiconductor with examples and a picture of a Plastic Logic printed organic transistor
  • 9.4. The principle behind E-Ink's technology
  • 9.5. Electrophoretic display on Esquire magazine October 2008
  • 9.6. Electrophoretic display on pricing label
  • 9.7. Electrophoretic display on key fob
  • 9.8. Shelf edge labels using electrophoretic displays
  • 9.9. Color electrophoretics by Fujitsu
  • 9.10. Game in secondary packaging by VTT Technology using thermochromic display
  • 9.11. ACREO PEDOT PSS electrochromic blue display with limited bistable capability. A different message appears when the reverse nine volts is applied
  • 9.12. Color LCD by photo alignment
  • 9.13. Photo alignment of LCD
  • 9.14. The HKUST optical rewriting
  • 9.15. Color printable flexible LCD
  • 9.16. Basic structure of an OLED
  • 9.17. Process flow in manufacture of OLEDs
  • 9.18. A Cambridge Display Technology colour OLED display
  • 9.19. Comparison of different printing techniques for OLED frontplanes, as evaluated by Seiko Epson
  • 9.20. Droplet driven electrowetting displays from adt, Germany
  • 9.21. Energy harvesting challenges
  • 9.22. Rapid progress in the capabilities of small electronic devices and their photovoltaic energy harvesting contrasted with more modest progress in improving the batteries they employ
  • 9.23. Power in use vs duty cycle for portable and mobile devices showing zones of use of single use vs rechargeable batteries
  • 9.24. Enfucell SoftBattery™
  • 9.25. Blue Spark laminar battery
  • 9.26. Blue Spark battery printing machine
  • 9.27. Volumetric energy density vs gravimetric energy density for rechargeable batteries
  • 9.28. Laminar lithium ion battery
  • 9.29. Typical active RFID tag showing the problematic coin cells
  • 9.30. Construction of a lithium rechargeable laminar battery
  • 9.31. Reel to reel construction of rechargeable laminar lithium batteries
  • 9.32. Infinite Power Solutions laminar lithium battery
  • 9.33. Ultra thin lithium rechargeable battery
  • 9.34. Construction of a thin-film battery
  • 9.35. Battery assisted passive RFID label with rechargeable thin film lithium battery recording time-temperature profile of food, blood etc in transit
  • 9.36. Flexible battery made of nanotube ink
  • 9.37. Transparent flexible photovoltaics
  • 9.38. Flexible battery that charges in one minute
  • 9.39. E-labels with capacitor and no battery
  • 9.40. Energy density vs power density for storage devices
  • 9.41. Laminar supercapacitor one millimeter thick
  • 9.42. Mobile phone modified to give much brighter flash thanks to supercapacitor outlined in red
  • 9.43. Flexographically printed carbon resistors with silver interconnects
  • 9.44. Actuator/ push button - two printed patterns folded together
  • 9.45. Screen printed interconnects and actuator connects
  • 9.46. Other printed conductor pattern demonstrators
  • 9.47. Printechnologics gaming card showing conductive pattern, and AirCode touch
  • 9.48. Copper ink particles
  • 9.49. Programmability of potential e-labels through the value chain
  • 9.50. Memristor
  • 9.51. Microwave metamaterial
  • 11.1. Distribution and primary focus of 3000 developers of printed and potentially printed electronics. Many are developing a variety of printed components, their machinery or their materials
  • 11.2. Paper roulette card with simulated spinning wheel for game
  • 11.3. ACREO development process
  • 11.4. ACREO Technology
  • 11.5. ACREO microphones
  • 11.6. ACREO sensors
  • 11.7. ACREO production
  • 11.8. ACREO focus on e-packaging
  • 11.9. Demonstrator organic transistor
  • 11.10. The Cymbet EnerChip™
  • 11.11. Thin-film solid-state batteries by Excellatron
  • 11.12. Ultra low cost printed battery
  • 11.13. NanoEnergy® powering a blue LED
  • 11.14. DSP= digital signal processing
  • 11.15. New time temperature recording label from Infratab
  • 12.1. How printed electronics is being applied to products
  • 12.2. Printed Electronics Applications
  • 12.3. Cost per square centimeter and functionality
  • 12.4. Consumer goods market for e-packaging devices 2014-2024 in millions of units
  • 12.5. Global market for electronic smart packaging based on EAS and RFID in millions of units 2014-2024
  • 12.6. Market for printed and potentially printed electronics in 2014
  • 12.7. The emerging value chain is unbalanced
  • 12.8. Those going to market first move right
Back to Top