株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

グラフェン、2D材料およびカーボンナノチューブ:市場・技術・市場機会:2017 - 2027年

Graphene, 2D Materials and Carbon Nanotubes: Markets, Technologies and Opportunities 2017-2027

発行 IDTechEx Ltd. 商品コード 249885
出版日 ページ情報 英文 270 Slides
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=113.77円で換算しております。
Back to Top
グラフェン、2D材料およびカーボンナノチューブ:市場・技術・市場機会:2017 - 2027年 Graphene, 2D Materials and Carbon Nanotubes: Markets, Technologies and Opportunities 2017-2027
出版日: 2017年04月12日 ページ情報: 英文 270 Slides
概要

グラフェンの市場は2027年に3億米ドル規模に成長すると予測されています。

当レポートでは、グラフェンの技術および市場について調査し、グラフェン市場の発展の経緯と今後の展望、グラフェンの各種製造・加工技術、用途別の詳細分析と10カ年成長予測、主な市場動向と市場影響因子および市場機会の分析、主要企業へのインタビュー、主要企業のプロファイルなどをまとめています。

第1章 イントロダクション

  • グラフェンの様々なタイプ
  • グラフェンの様々な製造手法
  • 主なグラフェン製造ルート
  • グラフェンの形状
  • 市場の状況・動向・展望
  • 市場状況の概要
  • ハイプサイクルのピークを過ぎる
  • サプライヤー数の増加
  • メディアの注目と特許の増加
  • グラフェン研究への大規模投資
  • グラフェン企業設立の投資
  • グラフェン企業の収益
  • グラフェン企業の損益
  • グラフェン企業の価値創造
  • サプライヤーの形態・投資・収益
  • 中国の台頭
  • 特許動向
  • グラファイト鉱床によるグラフェンの市場機会の認識
  • 世界のグラフェンサプライヤーの製造能力
  • 仲介者の重要性
  • グラフェンの価格と価格戦略
  • 品質と一貫性の課題
  • 現在のグラフェン対応製品
  • ESDフィルム
  • グラフェン vs. カーボンナノチューブ
  • 世界のCNTサプライヤーの生産容量、ほか

第2章 市場予測

  • 詳細なグラフェン市場10ヵ年予測:主要21のアプリケーション領域
  • グラフェン市場10ヵ年予測:アプリケーション区分別
  • 生データ - グラフェン市場10ヵ年予測:アプリケーション区分別
  • グラフェンプレートレットおよびグラフェンシートの予測
  • グラフェン市場の詳細
  • グラフェンプレートレット需要の予測、ほか

第3章 グラフェンの製造

  • エキスパンドグラファイト
  • 還元型酸化グラフェン
  • グラファイトの酸化
  • 酸化グラフェンの還元
  • 直接液相剥離
  • せん断力下の直接液相剥離
  • 電気化学剥離
  • 電気化学剥離グラフェンの特徴
  • プラズマ剥離
  • 無基板CVD
  • 無基板CVD (プラズマ)
  • 化学蒸着 (CVD)
  • 化学蒸着
  • 化学蒸着の転写プロセス、ほか

第4章 グラフェン材料

  • グラフェン材料の図

第5章 グラフェンの用途と市場

第6章 透明導電性フィルム

  • 透明導電性フィルム
  • インジウムすず酸化物 (ITO)
  • 透明導電性フィルムの10ヵ年予測
  • 市販のITOフィルムのパフォーマンスの定量マッピング
  • ITOフィルムの製造コストと柔軟性
  • TCFの市場力学およびニーズの変化
  • ITO代替物の評価
  • グラフェンのTCFとしてのパフォーマンス
  • グラフェンTCFのSWOT分析
  • シルバーナノワイヤーTCFのパフォーマンス
  • シルバーナノワイヤーTCFの柔軟性
  • シルバーナノワイヤーTCFのコスト構造
  • 市場でのシルバーナノワイヤー製品
  • メタルメッシュTCFのパフォーマンス
  • メタルメッシュTCFの柔軟性
  • カーボンナノチューブ TCFのパフォーマンス
  • カーボンナノチューブTCFの有益情報
  • TCF技術のベンチマーキング
  • ITO代替物の成否を決める年になるか?
  • ITO代替物市場の統合時代
  • ITO代替物の10ヵ年市場予測

第7章 グラフェン導電性インク

  • グラフェン導電性インクのパフォーマンス
  • 導電性グラフェンインクの用途
  • グラフェンインクによる抵抗加熱
  • グラフェンインクによる除霜
  • グラフェンヒーターによる除霜
  • 透過性電磁干渉(EMI)シールド
  • グラフェン対応製品および重要プロトタイプ
  • グラフェンインクは高不透明化が可能
  • RFIDの各種タイプ
  • RFIDアンテナ市場
  • RFIDアンテナ
  • RFIDタグのコスト内訳
  • RFIDアンテナの製造手法

第8章 スーパーキャパシター

  • スーパーキャパシターの10カ年市場予測:用途別
  • スーパーキャパシターの用途のパイプライン
  • スーパーキャパシターのコスト構造
  • スーパーキャパシターのコスト内訳
  • 輸送用途のスーパーキャパシター電極
  • スーパーキャパシター電極のアドレサブル市場の予測
  • ナノカーボンによるスーパーキャパシターのパフォーマンス
  • 既存の商用スーパーキャパシターのパフォーマンス
  • グラフェンの課題
  • カーボンナノチューブ スーパーキャパシターのパフォーマンス
  • カーボンナノチューブの潜在的メリット、ほか

第9章 エネルギー貯蔵 (リチウムイオン、シリコンアノード、およびリチウム硫黄)

  • リチウムイオン電池の発展の経緯
  • リチウムイオン電池前後の定量的ベンチマーキング
  • 予測に使用されるEVの数
  • リチウムイオン電池のコスト内訳
  • LFPカソードの改良
  • グラフェンとカーボンブラックの同時利用の理由
  • グラフェンによるNCM電池カソードの改良
  • LiTiOxアノードの改良、ほか

第10章 複合材料

  • 複合材料へのグラフェン添加剤利用:概要
  • グラフェン導電性複合材料:商業的成果
  • 導電性複合材料
  • EMI遮蔽
  • 導電性複合材料におけるCNTの成功
  • 導電性プラスチックへのCNT利用:製品の例、ほか

第11章 トランジスター用グラフェンおよび2D材料

  • グラフェントランジスターのパフォーマンス
  • その他の2D材料、ほか

第12章 タイヤ

  • タイヤの添加剤としてのグラフェン
  • グラフェン対応二輪タイヤの進歩
  • タイヤにおけるカーボンブラック
  • 自動車タイヤにおけるブラックカーボン
  • ブラックカーボンの様々なタイプ、ほか

第13章 センサー

  • グラフェンGFETセンサー
  • 高速グラフェンフォトセンサー
  • グラフェン湿度センサー、ほか

第14章 その他の用途

  • 防食塗料
  • 水濾過
  • 将来の用途、ほか

第15章 カーボンナノチューブの発展のレビュー

第16章 企業インタビュー

第17章 企業プロファイル

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

"Our latest up-to-date analysis shows that the graphene market will grow to over $300m by 2027."

This report provides the most comprehensive and authoritative view of the topic, giving detailed ten-year market forecasts segmented by application and material type. The market forecasts are given in tonnage and value at the material level. Furthermore, this report includes comprehensive interview-based profiles of all the key players the industry, providing intelligence on the investment levels, expected future revenues, and the production capacity across the industry and by supplier. In addition, this report critically reviews all existing and emerging production process.

This report also gives detailed, fact-based and insightful analysis of all the existing and emerging target applications. For target applications, the report provides an assessment and/or forecast of the addressable markets, key trends and challenges, latest results and prototype/product launches, and the IDTechEx insight on the market potential.

Unrivalled business intelligence and market insight

This report is based upon years of research and close engagement with the community of graphene and CNT producers, investors and users. In the past five years, we have interviewed and profiled almost all the graphene and carbon nanotube suppliers globally (>40), advised many investors and chemical companies on their graphene (and CNT) strategy, and guided many end-users.

In parallel to this, IDTechEx Research has itself organised seven international tradeshows and conferences on Graphene and 2D Materials. These commercial conferences have become the forum in which the latest innovations are announced and the latest products are launched. More importantly, they have become the premier international venue in which suppliers and users directly connect. This has given us an unrivalled access to all the players across the graphene/CNT community.

IDTechEx analysts also travel the world extensively to attend and lecture at all the conferences and tradeshows relevant to graphene and CNTs, giving us further opportunity to get to know the industry well, and hear and interpret the latest developments. We are confident that our knowledge and insight into the technologies, markets and applications of graphene and 2D materials is without parallel the world over.

The graphene market to reach over 3,800 tonnes per year in 2027

IDTechEx Research projects that the graphene market will grow to over $300m in 2027. This forecast is at the material level and does not count the value of graphene-enabled products. In many instances graphene is only an additive with low wt% values

A continual decline in average sales prices will accompany the revenue growth, meaning that volume sales will reach over 3.8 k tpa (tonnes per annum) in 2027. Despite this, IDTechEx forecasts suggest that the industry will remain in a state of over-capacity until 2021 beyond which time new capacity will need to be installed. Furthermore, IDTechEx Research forecasts that some 90% of the market value will go to graphene platelets (vs. sheets) in 2027.

The market will be segmented across many applications, reflecting the diverse properties of graphene. In general, we expect functional inks and coatings to reach the market earlier. This is a trend that we forecasted several years ago and is now observed in prototypes and small-volume applications. Indeed, IDTechEx Research projects that the market for functional inks and coatings will make up 21% of the market by 2018. Ultimately however, energy storage and composites will grow to be the largest sectors, controlling 25% and 40% of the market in 2027, respectively.

Figure 1.
Ten-year market projections split by application.
Please contact us for the exact values. Inset: market share
of graphene platelets vs sheets by value.

                     Source: IDTechEx.

What this report provides

  • 1. Ten-year market forecasts for graphene and CNTs segmented by material type and application (by volume and value).
  • 2. Investment, capacity and revenue by company.
  • 3. Interview-based company profiles of 50 graphene and CNT companies.
  • 4. Benchmarking of suppliers on the basis of technology readiness and medium-term commercial opportunity.
  • 5. Market trends and dynamics including:
    • a. Go-to-market strategy
    • b. Prices and pricing strategy
    • c. Product qualities and morphologies
    • d. Consistency and quality issues
    • e. Intermediary challenges
    • f. Current and expected product launches
    • g. Application timeline
  • 6. Overview of the multi-walled carbon nanotube industry including:
    • a. Production capacity by supplier
    • b. Current applications and forecast application pipeline
    • c. Segmented ten-year market projections
    • d. Benchmarking and mapping key players
  • 7. Detailed overview of production methods including:
    • a. Oxidisation-reduction
    • b. Direct liquid phase exfoliation
    • c. Electrochemical exfoliation
    • d. Plasma exfoliation
    • e. Substrate-less plasma or CVD growth
    • f. CVD growth of graphene sheets
    • g. Epitaxial
  • 8. Detailed application assessment often including IDTechEx insight and assessment, state-of-the-art and commercial progress, analysis of competing technologies, pricing trends, addressable market size, and ten-year market projections for:
    • a. Transparent conducting films
    • b. Functional inks and pairs
    • c. RFID antennas
    • d. Anti-corrosion coatings
    • e. Supercapacitors
    • f. Silicon anode
    • g. Li sulphur
    • h. Li ion and other battery technologies
    • i. Conductive, thermal, permeation or mechanically-enhanced composites
    • j. Graphene and 2D materials for transistors
    • k. Tires
    • l. Sensors
    • m. Anti-corrosion
    • n. Water filtration

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. INTRODUCTION

  • 1.1. There are many graphene types
  • 1.2. Trade-offs involved between different production processes
  • 1.3. Explaining the main graphene manufacturing routes
  • 1.4. Quantitative mapping of graphene morphologies on the market
  • 1.5. Market conditions, trends and outlook
  • 1.6. General observations on the market situation
  • 1.7. The hype curve of the graphene industry
  • 1.8. Supplier numbers on the rise
  • 1.9. Media attention and patent publications on the rise
  • 1.10. Large scale investment in graphene research
  • 1.11. Investment in new graphene companies split by specific companies
  • 1.12. Revenue of graphene companies split by 40 specific companies
  • 1.13. Profit and loss of graphene companies 2013 to 2016
  • 1.14. Value creation for graphene companies
  • 1.15. Tabulated information on supplier morphology, investment & revenue
  • 1.16. The rise of China
  • 1.17. Patent trends
  • 1.18. Graphite mines see opportunity in graphene
  • 1.19. Production capacity (tap) of graphene suppliers globally
  • 1.20. The importance of intermediaries
  • 1.21. Graphene Prices and Pricing Strategy
  • 1.22. Quality and consistency issue
  • 1.23. Graphene-enabled sports equipment
  • 1.24. Graphene enabled lithium ion batteries
  • 1.25. Graphene-enabled supercapacitors
  • 1.26. Graphene-enabled lead acid battery
  • 1.27. Graphene-enhanced conductive 3D printing filaments
  • 1.28. Graphene-enabled bike tires
  • 1.29. Graphene-enabled RFIDs and flexible interconnects
  • 1.30. Graphene-enabled anti-corrosion applications
  • 1.31. ESD films
  • 1.32. Graphene-enabled stretch sensor applications
  • 1.33. Graphene-enabled textile applications
  • 1.34. Graphene-enabled vehicle tire
  • 1.35. Graphene-enabled conductive adhesives and inks
  • 1.36. Graphene-enabled guitar strings and lubricants
  • 1.37. Graphene-enabled transparent conducting film applications
  • 1.38. Graphene-enabled stretch sensor applications
  • 1.39. Graphene vs. Carbon nanotubes
  • 1.40. Production capacity (tpa) of CNT suppliers globally

2. MARKET PROJECTIONS

  • 2.1. Granular ten year graphene market forecast segmented by 21 application areas
  • 2.2. Ten-year application-segmented graphene market forecast
  • 2.3. Raw data for application-segmented ten-year market forecasts
  • 2.4. Ten-year forecast for graphene platelet vs sheets
  • 2.5. Granular snapshot of the graphene market in 2019
  • 2.6. Granular snapshot of the graphene market in 2027
  • 2.7. Ten-year forecast for volume (MT) demand for graphene platelets
  • 2.8. Carbon nanotubes making a quiet comeback
  • 2.9. Strong pipeline of applications
  • 2.10. MWCNT: Evolution of global and company-specific production capacity from 2006 onwards
  • 2.11. Ten-year market forecast for MWCNTs segmented by 16 application in value
  • 2.12. Ten-year market forecast for MWCNTs segmented by 16 application in tonnes

3. GRAPHENE PRODUCTION

  • 3.1. Expanded graphite
  • 3.2. Reduced graphene oxide
  • 3.3. Oxidising graphite
  • 3.4. Reducing graphene oxide
  • 3.5. Direct liquid phase exfoliation
  • 3.6. Direct liquid phase exfoliation under shear force
  • 3.7. Electrochemical exfoliation
  • 3.8. Properties of electrochemical exfoliated graphene
  • 3.9. Plasma exfoliation
  • 3.10. Substrate-less CVD
  • 3.11. Substrate-less CVD (plasma)
  • 3.12. Chemical vapour deposition (CVD)
  • 3.13. Chemical vapour deposition
  • 3.14. Transfer process for chemical vapour deposition
  • 3.15. Roll-to-roll transfer of CVD graphene
  • 3.16. Novel methods for transferring CVD graphene
  • 3.17. Sony's approach to transfer of CVD process
  • 3.18. Sony's CVD graphene approach
  • 3.19. Sony's CVD graphene approach
  • 3.20. Wuxi Graphene Film Co's CVD graphene progress
  • 3.21. Wuxi Graphene Film Co's CVD graphene progress
  • 3.22. Direct growth of CVD on SiOx?
  • 3.23. Production cost of CVD graphene
  • 3.24. Epitaxial
  • 3.25. Largest single-crystalline graphene reported ever

4. GRAPHENE MATERIALS

  • 4.1. Pictures of graphene materials

    5. GRAPHENE APPLICATIONS AND MARKETS

6. TRANSPARENT CONDUCTIVE FILMS

  • 6.1. Transparent conductive films
  • 6.2. Indium Tin Oxide
  • 6.3. Ten-year segmented forecasts for transparent conducting films
  • 6.4. Quantitative mapping of the performance of commercial ITO films on the market
  • 6.5. Production cost and flexibility of ITO films
  • 6.6. Supply and demand for ITO films and indium
  • 6.7. Changing TCF market dynamics and needs
  • 6.8. Assessment of ITO alternatives
  • 6.9. Graphene performance as TCF
  • 6.10. SWOT analysis on graphene TCFs
  • 6.11. Experimental results on performance of silver nanowire TCFs
  • 6.12. Experimental results on flexibility of silver nanowire TCFs
  • 6.13. Silver nanowire TCF cost structure
  • 6.14. Silver nanowire products on the market
  • 6.15. Results on metal mesh TCF performance
  • 6.16. Results on flexibility of metal mesh TCFs
  • 6.17. Results on performance of carbon nanotube TCFs
  • 6.18. Useful information on carbon nanotube TCFs
  • 6.19. Benchmarking TCF technologies
  • 6.20. Make or break year for ITO alternatives?
  • 6.21. Consolidation period for the ITO alternative market
  • 6.22. ITO alternative ten-year market forecast

7. GRAPHENE CONDUCTIVE INKS

  • 7.1. Performance of graphene conductive inks
  • 7.2. Applications of conductive graphene inks
  • 7.3. Results of resistive heating using graphene inks
  • 7.4. Results of de-frosting using graphene inks
  • 7.5. Results of de-icing using graphene heaters
  • 7.6. Transparent EMI shielding
  • 7.7. ESD films printed using graphene
  • 7.8. Graphene UV shielding coatings
  • 7.9. Graphene inks can be highly opaque
  • 7.10. RFID types and characteristics
  • 7.11. UV resistant tile paints
  • 7.12. RFID antenna market figures
  • 7.13. RFID antennas
  • 7.14. Cost breakdown of RFID tags
  • 7.15. Methods of producing RFID antennas

8. SUPERCAPACITORS

  • 8.1. Ten-year market forecast for supercapacitors by application
  • 8.2. Application pipeline for supercapacitors
  • 8.3. Cost structure of a supercapacitor
  • 8.4. Cost breakdown of supercapacitors
  • 8.5. Supercapacitor electrode mass in transport applications
  • 8.6. Addressable market forecast for supercapacitor electrodes
  • 8.7. Supercapacitor performance using nanocarbons
  • 8.8. Performance of existing commercial supercapacitors
  • 8.9. Challenges with graphene
  • 8.10. Graphene surface area is far from the ideal case
  • 8.11. Promising results on graphene supercapacitors
  • 8.12. Performance of carbon nanotube supercapacitors
  • 8.13. Skeleton Technologies' graphene supercapacitors
  • 8.14. Potential benefits of carbon nanotubes
  • 8.15. Challenges with the use of carbon nanotubes
  • 8.16. Electrode chemistries of supercapacitor suppliers

9. ENERGY STORAGE (LI ION, SI ANODE AND LIS)

  • 9.1. Historical progress in Li ion batteries
  • 9.2. Quantitative benchmarking of Li and post-Li ion batteries
  • 9.3. EV numbers used in this projections
  • 9.4. Electrode mass by battery type
  • 9.5. Cost breakdown of Li ion batteries
  • 9.6. Why nanocarbons in Li batteries
  • 9.7. Graphene and graphene/CNT anodes in Li batteries
  • 9.8. Why graphene and carbon black are used together
  • 9.9. LFP cathode improvement (PPG Industry)
  • 9.10. Results showing graphene improves LFP batteries (Graphene Batteries)
  • 9.11. Results showing graphene improves NCM batteries (Cabot Corp)
  • 9.12. Results showing graphene improves LiTiOx batteries
  • 9.13. Results showing CNT improves the performance of commercial Li ion batteries (Showa Denko)
  • 9.14. Why graphene helps in Si anode batteries (California Lithium Battery)
  • 9.15. Results showing SWCNT improving in LFO batteries (Ocsial)
  • 9.16. Binder-free Li anodes with vertically grown MWCNTs
  • 9.17. MWCNTs are superior to SWCNT in energy storage?
  • 9.18. Why Silicon anode batteries?
  • 9.19. Overview of Si anode battery technology
  • 9.20. Challenges in silicon anodes
  • 9.21. Graphene's role in silicon anodes
  • 9.22. State of the art results in silicon-graphene anode batteries
  • 9.23. Silicon anodes manufacturing CVD - CalBatt
  • 9.24. State of the art in silicon-graphene anode batteries (PPG Industries)
  • 9.25. Results in silicon-graphene anode batteries (XG Sciences)
  • 9.26. Samsung's result on Si-graphene batteries
  • 9.27. State of the art in silicon-graphene anode batteries
  • 9.28. Motivation - Why Lithium Sulphur batteries?
  • 9.29. The Lithium sulphur battery chemistry
  • 9.30. Why graphene helps in Li sulphur batteries
  • 9.31. State of the art in use of graphene in Li Sulphur batteries
  • 9.32. State of the art in use of graphene in Li Sulphur batteries (Oxis Energy/Perpetuus Advanced Materials)
  • 9.33. State of the art in use of graphene in Li Sulphur batteries (Lawrence Berkeley National Laboratory)
  • 9.34. Graphene battery announcement (Grabat)
  • 9.35. Yuhuang's graphene-enabled battery
  • 9.36. Rise in the number of publications on nanocarbons in batteries

10. COMPOSITES

  • 10.1. General observation on using graphene additives in composites
  • 10.2. Commercial results on graphene conductive composites
  • 10.3. Experimental results on graphene conductive composites
  • 10.4. EMI Shielding
  • 10.5. How do CNTs do in conductive composites
  • 10.6. CNT success in conductive composites
  • 10.7. Examples of products that use CNTs in conductive plastics
  • 10.8. Results showing Young's Modulus enhancement using graphene
  • 10.9. Commercial results on permeation graphene improvement
  • 10.10. Permeation Improvement using graphene
  • 10.11. Thermal conductivity improvement using graphene, SWCNT and graphite as a function of wt% and vol%
  • 10.12. Commercial results on thermal conductivity improvement using graphene
  • 10.13. Thermal conductivity improvement using graphene
  • 11. GRAPHENE AND 2D MATERIALS FOR TRANSISTORS
  • 11.1. Performance of graphene transistors
  • 11.2. Graphene transistor based on work function modulation
  • 11.3. Results showing other 2D materials are better at creating transistor functions
  • 11.4. Mobility of 2D materials as a function of bandgap
  • 11.5. Suitability of 2D materials for large-area flexible devices
  • 11.6. Effect of growth method on mobility

12. TIRES

  • 12.1. Graphene as additive in tires
  • 12.2. Progress on graphene-enabled bicycle tires
  • 12.3. Carbon black in tires
  • 12.4. Black carbon in car tires
  • 12.5. Mapping of different carbon black types on the market
  • 12.6. CNT and graphene are the least ready emerging tech for tire improvement
  • 12.7. Results on use of graphene in silica loaded tires
  • 12.8. Comments on CNT and graphene in tires
  • 12.9. Total addressable market for graphene in tires

13. SENSORS

  • 13.1. Graphene GFET sensors
  • 13.2. Fast graphene photosensor
  • 13.3. Graphene humidity sensor
  • 13.4. Optical brain sensors using graphene
  • 13.5. Graphene skin electrodes
  • 13.6. Wearable stretch sensor using graphene
  • 14. OTHER APPLICATIONS
  • 14.1. Anti-corrosion coating
  • 14.2. Imagine Intelligent Textiles geotextile graphene
  • 14.3. Water filtration
  • 14.4. Lockheed Martin's water filtration
  • 14.5. Graphene-enhanced condoms?
  • 14.6. Future applications

15. REVIEW OF PROGRESS WITH CARBON NANOTUBES

  • 15.1. Carbon nanotubes- the big picture
  • 15.2. Carbon nanotubes are more mature than graphene
  • 15.3. Carbon nanotubes prices are falling
  • 15.4. Already commercial applications of CNTs
  • 15.5. Application Timeline
  • 15.6. Production capacity of carbon nanotubes
  • 15.7. Loss of differentiation in CNTs
  • 15.8. Differentiating between CNTs and graphene
  • 15.9. Will the CNT industry consolidate?
  • 15.10. Player dynamics in the CNT business
  • 15.11. Ten-year market forecast for MWCNTs segmented by 16 application in value
  • 15.12. Ten-year market forecast for MWCNTs segmented by 16 application in tonnes
  • 15.13. Nantero/Fujitsu CNT memory

16. INTERVIEW BASED COMPANY PROFILES

  • 16.1. Abalonyx AS
  • 16.2. Advanced Graphene Products
  • 16.3. Anderlab Technologies Pvt. Ltd.
  • 16.4. Angstron Materials
  • 16.5. Applied Graphene Materials
  • 16.6. Arkema
  • 16.7. Bayer MaterialScience AG (now left the business)
  • 16.8. Bluestone Global Tech (now left the business)
  • 16.9. C3Nano
  • 16.10. Cabot Corporation
  • 16.11. Cambridge Nanosystems
  • 16.12. Canatu
  • 16.13. Charmtron Inc
  • 16.14. CNano Technology
  • 16.15. CrayoNano
  • 16.16. Directa Plus
  • 16.17. g2o
  • 16.18. Gnanomat
  • 16.19. Grafen Chemical Industries
  • 16.20. Grafentek
  • 16.21. Grafoid
  • 16.22. Graphenano
  • 16.23. Graphene 3D Lab
  • 16.24. Graphene Frontiers
  • 16.25. Graphene Laboratories, Inc
  • 16.26. Graphene Square
  • 16.27. Graphene Technologies
  • 16.28. Graphenea
  • 16.29. Group NanoXplore Inc.
  • 16.30. Grupo Antolin Ingenieria
  • 16.31. Incubation Alliance
  • 16.32. Jinan Moxi New Material Technology
  • 16.33. Nanjing JCNANO Technology
  • 16.34. Nanocyl
  • 16.35. NanoInnova
  • 16.36. NanoIntegris
  • 16.37. Nantero
  • 16.38. OCSiAl
  • 16.39. OneD Material LLC
  • 16.40. Perpetuus Graphene
  • 16.41. Poly-Ink
  • 16.42. Pyrograf Products
  • 16.43. Raymor Industries, Inc.
  • 16.44. Showa Denko K.K
  • 16.45. SiNode Systems
  • 16.46. Skeleton Technologies
  • 16.47. SouthWest NanoTechnologies, Inc.
  • 16.48. The Sixth Element
  • 16.49. Thomas Swan
  • 16.50. Timesnano
  • 16.51. Unidym Inc
  • 16.52. Vorbeck Materials
  • 16.53. Wuxi Graphene Film
  • 16.54. XFNANO
  • 16.55. XG Sciences, Inc.
  • 16.56. Xiamen Knano
  • 16.57. XinNano Materials Inc
  • 16.58. Xolve, Inc
  • 16.59. Zyvex

17. COMPANY PROFILES

  • 17.1. 2D Carbon Graphene Material Co., Ltd
  • 17.2. Airbus, France
  • 17.3. Aixtron, Germany
  • 17.4. AMO GmbH, Germany
  • 17.5. Asbury Carbon, USA
  • 17.6. AZ Electronics, Luxembourg
  • 17.7. BASF, Germany
  • 17.8. Cambridge Graphene Centre, UK
  • 17.9. Cambridge Graphene Platform, UK
  • 17.10. Carben Semicon Ltd, Russia
  • 17.11. Carbon Solutions, Inc., USA
  • 17.12. Catalyx Nanotech Inc. (CNI), USA
  • 17.13. CRANN, Ireland
  • 17.14. Georgia Tech Research Institute (GTRI), USA
  • 17.15. Grafoid, Canada
  • 17.16. Graphene Devices, USA
  • 17.17. Graphene NanoChem, UK
  • 17.18. Graphensic AB, Sweden
  • 17.19. HDPlas, USA
  • 17.20. Head, Austria
  • 17.21. HRL Laboratories, USA
  • 17.22. IBM, USA
  • 17.23. iTrix, Japan
  • 17.24. JiangSu GeRui Graphene Venture Capital Co., Ltd.
  • 17.25. Lockheed Martin, USA
  • 17.26. Massachusetts Institute of Technology (MIT), USA
  • 17.27. Max Planck Institute for Solid State Research, Germany
  • 17.28. Momentive, USA
  • 17.29. Nanjing JCNANO Tech Co., LTD
  • 17.30. Nanjing XFNANO Materials Tech Co.,Ltd
  • 17.31. Nanostructured & Amorphous Materials, Inc., USA
  • 17.32. Nokia, Finland
  • 17.33. Pennsylvania State University, USA
  • 17.34. Power Booster, China
  • 17.35. Quantum Materials Corp, India
  • 17.36. Rensselaer Polytechnic Institute (RPI), USA
  • 17.37. Rice University, USA
  • 17.38. Rutgers - The State University of New Jersey, USA
  • 17.39. Samsung Electronics, Korea
  • 17.40. Samsung Techwin, Korea
  • 17.41. SolanPV, USA
  • 17.42. Spirit Aerosystems, USA
  • 17.43. Sungkyunkwan University Advanced Institute of Nano Technology (SAINT), Korea
  • 17.44. Texas Instruments, USA
  • 17.45. Thales, France
  • 17.46. University of California Los Angeles, (UCLA), USA
  • 17.47. University of Manchester, UK
  • 17.48. University of Princeton, USA
  • 17.49. University of Southern California (USC), USA
  • 17.50. University of Texas at Austin, USA
  • 17.51. University of Wisconsin-Madison, USA
Back to Top