株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

熱電素子によるエネルギーハーベスティング (環境発電)

Thermoelectric Energy Harvesting 2018-2028

発行 IDTechEx Ltd. 商品コード 239692
出版日 ページ情報 英文 144 Slides
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=114.89円で換算しております。
Back to Top
熱電素子によるエネルギーハーベスティング (環境発電) Thermoelectric Energy Harvesting 2018-2028
出版日: 2017年08月28日 ページ情報: 英文 144 Slides
概要

当レポートでは、熱電素子によるエネルギーハーベスティング(環境発電)の市場機会について調査分析し、デバイス・材料・製造プロセスの概要、さまざまな用途、新たな機能性・フォームファクター・用途を実現する新技術の分析、エンドユーザー産業別の市場成長予測、潜在的導入事業者による各種見解などをまとめています。

第1章 エグゼクティブサマリー・総論

第2章 イントロダクション

  • ゼーベックおよびペルチェ効果
  • 熱電素子利用のための設計
  • 薄膜熱電発電体
  • 材料の選択
  • 有機熱電素子 - PEDOT:PSS
  • 二元機能の熱電発電装置/予冷器:航空機のブリードエアからのDC電源

第3章 その他の処理技術

  • フレキシブル熱電発電体の製造
  • AIST技術の詳細

第4章 用途

  • 自動車
    • BMW
    • Ford
    • Volkswagen
    • 車両用熱電機器の課題
  • ワイヤレスセンサー
    • TE-qNODE
    • TE-CORE
    • EverGen PowerStrap
    • WiTemp
    • GE Logimesh
  • 航空宇宙
  • 植込み型熱電素子
  • 家電/ウェアラブル機器における熱電素子
  • 1デバイスによる太陽光発電および熱電素子エネルギーハーベスティング
  • ビルおよびホームオートメーションにおける熱電素子エネルギーハーベスティング
  • その他

第5章 インタビュー:商業化に関する考察

  • Ford
  • Microsemi
  • MSX Micropelt
  • Rolls Royce
  • TRW
  • Volvo

第6章 市場予測

  • 用途および市場区分
    • 無線センサー・アクチュエータ
    • スマートビルディング・ホームオートメーション
    • 軍事・航空宇宙
    • その他の産業用途
    • 一般用途
    • その他の用途
  • 単価
  • エネルギーハーベスティング機器向け熱電素子の売上
  • 収益ベースの市場予測

第7章 企業プロファイル

  • Alphabet Energy, Inc.
  • EVERREDtronics Ltd
  • Ferrotec Corporation
  • Gentherm
  • Global Thermoelectric (now Gentherm)
  • GMZ Energy
  • greenTEG
  • Hi Z Technology, Inc
  • KELK Ltd.
  • Laird / Nextreme
  • Marlow
  • mc10
  • Micropelt GmbH
  • National Institute of Advanced Industrial Science & Technology (AIST)
  • Novus
  • O-Flexx
  • OTEGO
  • Perpetua
  • RGS Development
  • Romny Scientific
  • Tellurex Corporation
  • Thermolife Energy Corporation
  • ヤマハ発動機

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

"The market for thermoelectric energy harvesters will reach over $1.5 billion by 2028."

Thermoelectric generators are devices which convert temperature differences into electrical energy. The principle phenomenon that underpins thermoelectric energy generation is known as the Seebeck effect: the conversion of a temperature differential into electricity at the junction of two materials.

Although thermoelectric phenomena have been used for heating and cooling applications quite extensively, electricity generation has only seen very limited market in niche applications and it is only in recent years that interest has increased regarding new applications of energy generation through thermoelectric harvesting.

The new applications are varied and the vertical markets benefiting from new devices range from condition monitoring in industrial environments, smart metering in energy market segments, to thermoelectric applications in vehicles, either terrestrial or other.

This report gives an overview of devices, materials and manufacturing processes, with a specific focus on emerging technologies that allow for new functionality, form factor and application in various demanding environments. Whether it is operation in high temperatures or corrosive environments, applications with increased safety demands or components that need to be thin, flexible, or even stretchable, there is a lot of research and development work worldwide which is highlighted.

Waste heat recovery systems in vehicles: A large number of car companies, including Volkswagen, VOLVO, FORD and BMW in collaboration with NASA have been developing thermoelectric waste heat recovery systems in-house, each achieving different types of performance but all of them expecting to lead to improvements of 3-5% in fuel economy while the power generated out of these devices could potentially reach up to 1200W. What does the future hold with electrification of vehicles globally picking up pace and the market conditions turning unfavorable for thermoelectrics that require the high temperatures present in internal combustion engines for optimal operation.

Wireless sensor network adoption. Wireless sensors powered by thermogenerators in environments where temperature differentials exist would lead to avoiding issues with battery lifetime and reliability. It would also lead to the ability to move away from wired sensors, which are still the solution of choice when increased reliability of measurement is necessary. Some applications have low enough power demands to operate with small temperature differentials, as small as a few degrees in some cases. These types of developments increase adoption trends.

Consumer applications: In these applications, the type of solution that thermogenerators provide varies: it could be related to saving energy when cooking by utilising thermo-powered cooking sensors, powering mobile phones, watches or other consumer electronics, even body sensing could become more widespread with wearables such as sensory wristbands, clothing or athletic apparel that monitor vitals such as heart rate, body temperature, etc.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY

  • 1.1. Executive summary and conclusions
  • 1.2. Market forecasts for thermoelectric energy harvesters in different applications 2016-2028
  • 1.3. Wireless sensors, actuators, and wireless sensor networks
  • 1.4. Home automation, commercial & retail buildings, and industrial automation.
  • 1.5. Waste heat recovery systems in vehicles
  • 1.6. Consumer, military and aerospace applications
  • 1.7. Additional challenges and opportunities for thermoelectric devices

2. INTRODUCTION

  • 2.1. The Seebeck and Peltier effects
  • 2.2. Manufacturing of thermoelectric generators
    • 2.2.1. Thermoelectric generator design considerations
  • 2.3. Thin film thermoelectric generators
  • 2.4. Material choices
  • 2.5. Organic thermoelectrics - PEDOT:PSS, not just a transparent conductor
  • 2.6. Bi-functional thermoelectric generator/ pre-cooler: DC power from aircraft bleed air

3. OTHER PROCESSING TECHNIQUES

  • 3.1. Manufacturing of flexible thermoelectric generators
  • 3.2. AIST technology details

4. APPLICATIONS

  • 4.1. Automotive applications
    • 4.1.1. BMW
    • 4.1.2. Ford
    • 4.1.3. Volkswagen
    • 4.1.4. Challenges of Thermoelectrics for Vehicles
    • 4.1.5. Peak in overall car sales then peak in electric car sales k globally
  • 4.2. Wireless sensing
    • 4.2.1. TE-qNODE
    • 4.2.2. TE-CORE
    • 4.2.3. EverGen PowerStrap
    • 4.2.4. WiTemp
    • 4.2.5. GE Logimesh
  • 4.3. Aerospace
  • 4.4. Implantable thermoelectrics
  • 4.5. Thermoelectrics in consumer electronics/wearables
    • 4.5.1. Matrix PowerWatch
    • 4.5.2. 4.5.2 Academic research on wearables
    • 4.5.3. Device size requirements in wearables
  • 4.6. Solar and thermoelectric energy harvesting in one device
    • 4.6.1. Thermoelectric energy harvesting in consumer electronics- discussion
    • 4.6.2. Thermoelectric energy harvesting in consumer electronics- power requirements
    • 4.6.3. Thermoelectric energy harvesting in consumer electronics- e-textile integration
  • 4.7. Thermoelectric energy harvesting in building & home automation
    • 4.7.1. The Sentinel
    • 4.7.2. Home and commercial building automation - discussion
  • 4.8. Other applications
    • 4.8.1. Micropelt-MSX
    • 4.8.2. PowerPot™ - Spark

5. INTERVIEWS - COMMERCIALIZATION CONSIDERATIONS

  • 5.1. Ford
  • 5.2. Microsemi
  • 5.3. MSX Micropelt
  • 5.4. Rolls Royce
  • 5.5. TRW
  • 5.6. Volvo

6. THERMOELECTRIC ENERGY HARVESTERS: MARKET FORECASTS

  • 6.1. Applications and market segmentation
    • 6.1.1. Wireless sensors and actuators
    • 6.1.2. Smart buildings and Home automation
    • 6.1.3. Military and Aerospace
    • 6.1.4. Other industrial applications
    • 6.1.5. Consumer applications
    • 6.1.6. Other applications
  • 6.2. Unit price considerations
  • 6.3. Thermoelectrics for Energy Harvesting units value dollars 2016-2028
  • 6.4. Market forecasting revenue

7. COMPANY PROFILES

  • 7.1. Alphabet Energy, Inc.
  • 7.2. EVERREDtronics Ltd
  • 7.3. Ferrotec Corporation
  • 7.4. Gentherm
  • 7.5. Global Thermoelectric (now Gentherm)
  • 7.6. GMZ Energy
  • 7.7. greenTEG
  • 7.8. Hi Z Technology, Inc
  • 7.9. KELK Ltd
  • 7.10. Laird/ Nextreme
  • 7.11. Marlow
  • 7.12. mc10
  • 7.13. Micropelt GmbH
  • 7.14. National Institute of Advanced Industrial Science & Technology (AIST)
  • 7.15. Novus
  • 7.16. O-Flexx
  • 7.17. OTEGO
  • 7.18. Perpetua
  • 7.19. RGS Development
  • 7.20. Romny Scientific
  • 7.21. Tellurex Corporation
  • 7.22. Termolife Energy Corporation
  • 7.23. Yamaha
Back to Top