特集 : 国別レポートが13,000件から検索可能になりました!

特集 : 海外市場の委託調査がセミカスタムベースでお手軽にできます

株式会社グローバルインフォメーション
表紙
市場調査レポート
商品コード
955119

グリーン5G:5Gの省エネルギー戦略

Green 5G: 5G's Energy-Saving Strategies

出版日: | 発行: IDATE DigiWorld | ページ情報: 英文 47 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=105.45円

ご注意: Single Departmentライセンスは、DRM (デジタル著作権管理システム) 付PDFになります。
認証されたPC上のみでの閲覧となっております。

グリーン5G:5Gの省エネルギー戦略
出版日: 2020年08月24日
発行: IDATE DigiWorld
ページ情報: 英文 47 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

5Gは、使用数の増加、新しい周波数帯の採用、ネットワーク密度の向上が必要となるため、ネットワークの消費量を増加させる可能性が非常に高いです。

当レポートでは、5Gロールアウトに含まれる環境への懸念について調査分析し、省エネルギー向けのソリューション (AI、スリープモード、仮想化など) について、体系的な情報を提供しています。

目次

第1章 エグゼクティブサマリー

第2章 モバイルネットワーク消費の増加の背後にある要因

  • イントロダクション
  • あらゆる面で急増するトラフィック
  • スペクトルの影響を強く受けるネットワークトポロジー
  • ネットワーク密度の増加、消費の増加をマッピングする鍵
  • コアネットワークも密度の増加の影響を受ける
  • Massive MIMOの開発
  • 多くの送信源は、多くの消費を意味する
  • 5Gのパフォーマンスが、エネルギー消費の増加を促進

第3章 省エネルギー・最適化ソリューション

  • サマリー:エネルギー消費を削減する主なルート
  • 基地局の先進のスリープモード
  • Massive MIMOシステムによるエネルギー消費の削減
  • 省エネルギーにおけるAI(機械学習)の役割
  • 半導体の進歩と既存システムの最適化
  • 古いネットワーク(2G/3G/4G)機器の交換
  • 4G/5Gへの効率的な移行に対する柔軟なスペクトル共有
  • アクセスネットワーク仮想化とリソース共有

第4章 企業のポジショニング

  • サマリー:機器サプライヤーのポジショニング
  • 機器サプライヤーによる省エネルギーへのアプローチの比較
    • Huawei
    • Nokia
    • Ericsson
    • Samsung
  • サマリー:オペレーターのポジショニング
  • 企業による省エネルギーへのポジショニング
    • Orange
    • AT&T
    • China Mobile
    • Telefonica
    • Vodafone
目次
Product Code: M20430MRA

This report analyses the ways in which environmental concerns are being factored into 5G rollouts.

It is highly likely that 5G will drive an increase in networks' consumption, as it enables a growing number of uses, employs new frequency bands and requires increased network density, moving beyond the confines of classic broadband.

That said, a host of initiatives are focused on optimising per-unit consumption levels. This report takes a look at a number of solutions designed to reduce and optimise energy consumption (AI, sleep modes, virtualisation, etc.).

The world's leading telecom manufacturers, equipment suppliers and operators are working to adopt these energy-saving solutions which, more and more, are being seen as selling points.

This report examines the strategies of some 20 market players, providing a detailed analysis for ten of them.

The report answers the following questions:

  • How will 5G change network consumption?
  • What are the main (current and future) avenues for reducing 5G's consumption?
  • How are equipment suppliers tackling energy saving issues?
  • Which operators have the greenest strategic plans and most ambitious carbon-neutrality targets?

Table of Contents

1. Executive Summary

2. Factors behind mobile networks' increased consumption

  • 2.1. Introduction
  • 2.2. Traffic surging on all fronts
  • 2.3. Network topologies highly influenced by spectrum
  • 2.4. Increased network density, key to mapping the rise in consumption
  • 2.5. Core network also affected by increased density
  • 2.6. Development of Massive MIMO
  • 2.7. More transmission sources means more consumption
  • 2.8. 5G performances driving increased energy consumption

3. Energy savings and optimisation solutions

  • 3.1. Summary: main paths to reducing energy consumption
  • 3.2. Base stations' advanced sleep modes
  • 3.3. Reducing massive MIMO systems' energy consumption
  • 3.4. Role of AI (Machine Learning) in energy saving
  • 3.5. Progress in semiconductors and optimising existing systems
  • 3.6. Replacing old networks' (2G/3G/4G) equipment
  • 3.7. Flexible spectrum sharing for an efficient transition to 4G/5G
  • 3.8. Access network virtualisation and resource sharing

4. Players' positioning

  • 4.1. Summary: equipment suppliers' positioning
  • 4.2. Comparison of equipment suppliers' approach to energy savings
    • Huawei
    • Nokia
    • Ericsson
    • Samsung
  • 4.3. Summary: operators' positioning
  • 4.4. How players are positioned on energy consumption. Orange
    • Orange
    • AT&T
    • China Mobile
    • Telefónica
    • Vodafone

List of tables and figures

Factors behind mobile networks' increased consumption

  • Networks' energy consumption curve and future scenarios
  • Breakdown of a mobile networks' sources of energy consumption
  • 5G target performances (IMT-2020)
  • Forecast increase in monthly mobile traffic worldwide
  • Main pros and cons of the different frequency bands
  • How calling networks have evolved to accommodate more complex and demanding uses
  • The core network's evolution
  • Comparison of cell vs. massive MIMO coverage
  • Progression of MIMO antenna configurations and associated power needs
  • Key principles of 5G and how they effect the networks' energy consumption

Energy savings and optimisation solutions

  • Main paths to reducing a network's energy consumption
  • Sleep modes defined in 5G standards
  • Implementing an AI-based energy savings mechanism
  • Snapshot of equipment suppliers' solutions using AI to manage sleep modes
  • Progression of the size of a 5G base station over the course of its development cycle
  • Example of a typical evolution in the different radio technologies frequency bands use
  • Comparison of virtualised and non-virtualised radio access network architecture

How players are positioned

  • Comparison of how the main equipment suppliers are positioned with respect energy efficiency
  • Evolution of Huawei's active antenna solutions
  • Ericsson's different energy-saving features
  • Measures being taken by operators to limit energy consumption
  • How operators are position on energy consumption
  • Progression of energy consumption (in GWh) by Orange fixed and mobile networks
  • Difference between the two 5G services launched by AT&T and impact on network density
  • Progression of energy consumption (in GWh) by AT&T fixed and mobile networks
  • Coordinated deactivation of frequency bands according to traffic helps reduce electricity consumption
  • When traffic is multiplied by 3.5 over consumption remains stable
  • Distribution of energy savings across the network
  • Evolution of the Vodafone network's energy consumption
株式会社グローバルインフォメーション
© Copyright 1996-2020, Global Information, Inc. All rights reserved.