特集: 調査項目の変更・追加が可能なセミカスタムオーダー型の調査レポート(Lucintel社)はこちら

特集 : 国別の市場調査レポートをお探しの方はこちら

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

量子磁力計の世界市場:2020年~2029年

Quantum Magnetometer Markets: 2020 to 2029

発行 Inside Quantum Technology 商品コード 934248
出版日 ページ情報 英文 64 Pages
即納可能
価格
本日の銀行送金レート: 1USD=108.13円で換算しております。
量子磁力計の世界市場:2020年~2029年 Quantum Magnetometer Markets: 2020 to 2029
出版日: 2020年04月23日 ページ情報: 英文 64 Pages
概要

磁力計は、地球物理学の研究や鉱物探査、磁気調査、ハザード検出などに用いられており、医学や軍事などの分野でも使われるようになっています。量子磁力計は、光ポンピング磁力計、陽子磁力計、オーバーハウザー磁力計、SERF、NVダイヤモンド蒸気セル磁力計、SQUIDなど従来の磁力計に比べ感度が高く、今後普及が拡大すると見られています。用途分野の拡大により、量子磁力計の市場規模 は、2025年の時点で7億米ドルに達する見通しです。

当レポートは、世界の量子磁力計市場を分析したもので、製品の概要と進化、主な市場と用途分野の分析、開発状況、今後10年の予測などの情報を提供しています。

目次

第1章 レポートの背景

  • 量子磁力計スペースの新興市場機会
  • このレポートの目的と範囲
  • このレポートの調査手法
  • このレポートの計画

第2章 量子磁力計製品とその進化

  • SERF方式
  • SQUID方式とSERF方式
  • 量子磁力計市場向けのNVセンターセンサー
  • プロトン磁力計
  • オーバーハウザー磁力計
  • 光ポンピング磁力計
  • チップスケール原子磁力計
  • この章の要点

第3章 磁力計の市場と用途

  • ヘルスケアと医学:MEG、循環器、およびその他の市場
    • MEGがSQUIDSの「キラーアプリ」としてどのように信頼できるか
  • 量子磁力計の防衛および航空宇宙用途
    • 米中対立を踏まえた市場の考察
  • 量子磁力計と世界の測位と通信の拡大
    • GPS
    • 量子ラジオ
  • 量子磁力計の地球物理学的用途と市場
    • 鉱物探査
    • 磁気調査
    • 火山学と地震調査
    • 考古学
    • UXO検出
    • ハザード検出
  • 科学調査開発市場
    • 天文学と天体物理学
    • 地質学および材料科学
  • この章の要点

第4章 量子磁力計:製品と開発

  • 研究開発活動
  • 欧州における量子磁力計の開発
    • センサーと計測のためのUK Quantum Technology Hub
    • European Flagship Project
    • Fraunhofer IAF-QMag構想
    • Magnicon
    • Supracon
  • 米国およびカナダにおける量子磁力計の開発
    • NISTでのプロジェクトのレビュー
    • DARPAでのプロジェクトのレビュー
    • Lockheed Martin - Untraceable GPS
    • Tristan Technologies
    • Gem Systems
    • Geometrics
    • Marine Magnetics
    • Twinleaf
    • QuSpin
  • 中国科学院
  • この章の要点

第5章 量子磁力計の10年間の予測

  • 予測調査手法
  • 医療分野の予測
  • 防衛/航空宇宙分野の予測
  • 測位/通信分野の予測
  • 地球物理学分野の予測
  • 研究開発分野の予測
  • 量子磁力計の予測
目次
Product Code: IQT-QMM-0420

This report is the first industry analysis report to analyze the market for quantum magnetometers. This is a market that Inside Quantum Technology believes will grow to well over $700 million by 2025 driven by compelling value propositions in medicine, the military, and geophysical applications.

This report examines both technical and market factors driving the market for quantum magnetometers:

  • Geophysical studies and exploration is by far the biggest market for magnetometers and this area has used classical magnetometers for half a century for applications such mineral explorations, magnetic survey and hazard detection. This report discusses how the use of quantum technology for magnetometers is expanding the market for geophysical studies.
  • While all quantum magnetometers offer users enhanced sensitivity compared with classical magnetometers, there is growing competition in the field between optically pumped magnetometers, proton magnetometers, Overhauser magnetometers, SERFs, NV-diamond vapor cell magnetometers and SQUIDs. In this report, we discuss how each of these magnetometer types fit the needs of key end-user industries.
  • While, quantum magnetometers have been shown to add value to some established markets, interesting - and potentially profitable - new applications for quantum magnetometers are also beginning to appear. For example, beyond medical imaging, the extreme sensitivity of SQUIDs makes them ideal for biological investigations of various kinds. And NV-diamond center magnetometers are being used in navigation systems where conventional GPS won't work. A detailed assessment of the commercial potential for such novel systems is also included in this report.
  • Quantum magnetometers have a large number of applications in the military. Both researchers in the US and China are working on such applications and this report discusses the impact that an era of Sino-American tensions may have on the quantum magnetometer business.
  • The report also examines new quantum technology developments in the magnetometer. In particular we take a look at chip-scale atomic magnetometers and we take a look at what these might mean in drones for aerial systems, the measurement of interplanetary magnetic fields or deployed close to the heart for magnetocardiography, among other applications.

The report also includes a country-by-country analysis of both R&D and commercial development of quantum magnetometer systems. This includes strategic profiles of the leading firms manufacturing and marketing quantum magnetometer. In addition, there are detailed ten-year forecasts with breakouts by type of magnetometer and application.

Table of Contents

Chapter One: Background to this Report

  • 1. Emerging Market Opportunities in the Quantum Magnetometer Space
  • 2. Objective and Scope of this Report
  • 3. Methodology of this Report
  • 4. Plan of this Report

Chapter Two: Quantum Magnetometer Products and their Evolution

  • 2.1. SERFs: Powerful but Flawed
  • 2.2. SQUIDs versus SERF Competition
  • 2.3. NV-centers Sensors for the Quantum Magnetometer Market
  • 2.4. Proton Magnetometers: Rough but Cheap
  • 2.5. Overhauser Magnetometers: What's Next After Proton Magnetometers
  • 2.6. Optically Pumped Magnetometers: Cesium, Potassium, and Others.
  • 2.7. Chip-scale Atomic Magnetometers: Market Potential and Technical Evolution
  • 2.8. Key points from this Chapter

Chapter Three: Magnetometer Markets and Applications

  • 3.1. Healthcare and Medicine: MEG, Cardiology, and Other Markets
    • 3.1.1. How Credible is MEG as a “Killer App” for SQUIDS
  • 3.2. Defense and Aerospace Uses for Quantum Magnetometers
    • 3.2.1. Quantum Magnetometer Market Reconsidered in the Light of US-China Rivalry
  • 3.3. Quantum Magnetometers and the Expansion of Global Positioning and Communications
    • 3.3.1. GPS
    • 3.3.2. Quantum Radio
  • 3.3. Geophysical Applications and Markets for Quantum Magnetometers
    • 3.3.1. Mineral Exploration
    • 3.3.2. Magnetic Surveys
    • 3.3.3. Volcanology and Earthquake Research
    • 3.3.4. Archeology
    • 3.3.5. UXO Detection
    • 3.3.6. Hazard Detection
  • 3.4. Scientific Research and R&D Markets
    • 3.4.1. Astronomy and Astrophysics
    • 3.4.2. Geology and Material Science
  • 3.5. Key Points from This Chapter

Chapter Four: Quantum Magnetometers: Products and Development

  • 4.1. R&D Activity
  • 4.2. Quantum Magnetometer Development in Europe
    • 4.2.1. UK Quantum Technology Hub for Sensors and Metrology
    • 4.2.2. European Flagship Project
    • 4.2.3. Fraunhofer IAF - the QMag Initiative
    • 4.2.5. Magnicon
    • 4.2.6. Supracon
  • 4.3. Quantum Magnetometer Development in the US and Canada
    • 4.3.1. Review of Projects at NIST
    • 4.3.2. Review of Projects at DARPA
    • 4.3.3. Lockheed Martin - Untraceable GPS
    • 4.3.4. Tristan Technologies
    • 4.3.5. Gem Systems
    • 4.3.6. Geometrics
    • 4.3.7. Marine Magnetics
    • 4.3.8. Twinleaf
    • 4.3.9. QuSpin
  • 4.4. Chinese Academy of Sciences
  • 4.3. Key Points from This Chapter

Chapter Five: Ten-Year Forecasts of Quantum Magnetometers

  • 5.1. Forecasting Methodology
  • 5.2. Forecast of Quantum Magnetometers in Healthcare by Type of Magnetometer
  • 5.3. Forecast of Quantum Magnetometers in Defense/ Aerospace by Type of Magnetometer
  • 5.4. Forecast of Quantum Magnetometers in Global Positioning/Communications by Type of Magnetometer
  • 5.5. Forecast of Quantum Magnetometers in Geophysical Applications by Type of Magnetometer
  • 5.6. Forecast of Quantum Magnetometers in R&D by Type of Magnetometer
  • 5.7. Forecast of Quantum Magnetometers