無料セミナー : 2019年6月25日『AI (人工知能)技術市場:最新動向と将来予測』 Tractica共同開催

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

5G/LTE基地局、RRH、CPE、IoTコンポーネント:比較分析

5G/LTE Base Station, RRH, CPE & IoT Components: A Competitive Analysis

発行 Heavy Reading 商品コード 696430
出版日 ページ情報 英文 65 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=110.75円で換算しております。
Back to Top
5G/LTE基地局、RRH、CPE、IoTコンポーネント:比較分析 5G/LTE Base Station, RRH, CPE & IoT Components: A Competitive Analysis
出版日: 2018年08月31日 ページ情報: 英文 65 Pages
概要

モバイル産業が5Gサービスの導入に備えるなか、5G/LTEのマクロ・小型基地局やC-RAN、RRH、CPE、端末モデム、IoTシステム実装のためのコンポーネントへの大規模な投資がおこなわれいます。IoT/M2Mアプリケーションに対しては、ナローバンドIoTやCat-Mモデムがコスト効率の良いネット接続を、スマートシティやローカルホットスポットには、無認可帯域上のLTEや60GHzリンクが魅力的な代替案を提供しています。

当レポートでは、5G、LTEおよび基地局やユーザーデバイスむけの関連コンポーネントを開発するベンダーの分析、コンポーネントに関する詳細な情報、市場全体や収益構造の進化などについて取り上げています。

第1章 エグゼクティブサマリー

  • 主な調査結果
  • 調査対象企業

第2章 イントロダクション

  • 機械学習のカテゴリ
  • AI/MLへの関心が復活した理由

第3章 通信産業における潜在的なAI/MLの使用事例

  • ネットワーク運用監視と管理
  • 予測的メンテナンス
  • 不正の緩和
  • サイバーセキュリティ
  • 顧客サービス・マーケティングの仮想デジタルアシスタンス
  • 高度CRMシステム
  • CEM

第4章 AIのCSP導入

  • 多くのCSPはすでにIT/ネットワークにAI/MLを導入しているとのTCSの調査結果
  • より慎重なAI/MLの導入を提唱するTMフォーラム
  • AI/MLの主な活性因子となる顧客エクスペリエンス
  • ネットワーク管理におけるAI/ML

第5章 現実世界のCSP事例

  • AT&T
  • COLT
  • Deutsche Telekom
  • Globe Telecom
  • KDDI
  • KT
  • SK Telecom
  • Swisscom
  • Telefonica
  • Vodafone

第6章 ネットワークへのAI/ML導入に対する課題

  • 不純、不可用的、アクセス困難なデータ
  • データサイエンスの人材不足
  • 答えられる明確な疑問の不足
  • ツールの制限

第7章 学術・SDO・コンソーシアム・OSイニシアティブ

  • 学術 - 知識が定義するネットワーク
  • 規格開発機構
  • 業界のコンソーシアム - 通信インフラプロジェクト
  • オープンソース - Acumos

第8章 ベンダーのプロファイル

  • Afiniti
  • AIBrain
  • Anodot
  • Arago
  • Aria Networks
  • Avaamo
  • B.Yond
  • Cardinality
  • Guavus
  • Intent HQ
  • IPsoft
  • Nuance Communications
  • Skymind
  • Subtonomy
  • Tupl
  • Wise Athena

第9章 結論

目次

As the mobile industry prepares for the introduction of 5G services, we have seen significant investment in components to implement 5G/LTE macro and small base stations, centralized and cloud radio access networks (C-RANs), remote radio heads (RRH), customer premises equipment (CPE) and handset modems, and Internet of Things (IoT) systems. The latest components support 3GPP Release 13/14 LTE-Advanced Pro with throughput up to 2 Gbit/s and 5G New Radio (NR) with throughput up to 5 Gbit/s. For IoT/machine-to-machine (M2M) applications, narrowband IoT (NB-IoT) and Cat-M modems provide cost-effective connectivity and for smart cities and local hotspots, LTE over unlicensed spectrum and 60 GHz links offer attractive alternatives.

The success of carriers in delivering high-quality mobile data services using LTE is opening up new opportunities for enhanced mobile broadband (eMBB), fixed wireless access (FWA), industrial wireless, vehicle communications and IoT connectivity. Solutions for LTE-Advanced Pro implement many new technologies to enable these applications and developments for 5G to take this further with more flexible waveforms, low-latency operation, network slicing, massive multiple input/multiple output (M-MIMO) and beamforming. The shift to 5G is opening up significant network capacity, with new spectrum becoming available for 5G in both sub-6 GHz and millimeterwave (mmWave) bands.

Network virtualization is already having a significant impact on mobile infrastructure. The LTE packet core is increasingly being implemented using virtual functions, and the RAN is moving from a distributed architecture to a virtualized architecture with RRHs and virtual baseband units. The 5G packet core is defined as a virtualized architecture, and this approach is enabling flexible deployment scenarios as carriers migrate from LTE to 5G. This virtualized approach for both LTE and 5G requires: software-defined radio (SDR); low-latency, Ethernet-based, fronthaul connections to RRHs; and flexible baseband processing with hardware acceleration. The latest base station devices support these requirements with multiple options for RRHs, small-cell base stations and macrocells. In addition to these merchant silicon devices, other options include IP for FPGAs and ASICs.

Most LTE-enabled phones use integrated application processor and LTE modem devices. Apple continues to use discrete LTE modems from Intel and Qualcomm. For other applications, including FWA, discrete LTE modems are required for CPE systems. Many of these systems only need to support LTE or 5G. There are at least 10 vendors supplying these discrete LTE or 5G modems, offering throughputs from 150 Mbit/s to 5 Gbit/s.

The introduction of NB-IoT and LTE Cat-M solutions is enabling ubiquitous and low-cost connectivity for IoT/M2M applications. NB-IoT can be implemented using very little spectrum or - where guard bands are used - no spectrum, helping carriers to offer very attractive services for IoT systems. The NB-IoT ecosystem is expanding rapidly, with many companies offering NB-IoT solutions.

The wireless communications market is very competitive, with multiple vendors developing baseband and radio frequency (RF) devices for base stations, CPE and IoT systems. The rapid pace of development for LTE fueled significant vendor consolidation, with market leaders acquiring smaller companies and several key players exiting the market. During the past few years, the market has been relatively stable; however, we are now seeing significant investments in 5G and new companies entering the market for NB-IoT and LTE Cat-M.

“5G/LTE Base Station, RRH, CPE & IoT Components: A Competitive Analysis ” identifies and analyzes the full spectrum of vendors developing 5G, LTE and related components for base stations and user devices, including IoT/M2M. It includes not only granular information on the components themselves - of interest to system developers and service providers - but also insights into how the overall market and ecosystem is developing - of interest to a wide audience, including investors.

3GPP has defined several 5G deployment scenarios that cover various combinations of 5G and LTE RAN. The excerpt below shows the main options. 3GPP has focused first on options 2 and 3, and is now moving on to options 4 and 7. The use of virtual functions will allow operators to migrate from using NSA 5G NR to SA 5G NR, and from LTE EPC to 5G next-generation core (NGC).

“5G/LTE Base Station, RRH, CPE & IoT Components: A Competitive Analysis ” is published in PDF format.

Table of Contents

1. EXECUTIVE SUMMARY

  • 1.1. Key Findings
  • 1.2. Companies Covered

2. INTRODUCTION

  • 2.1. Machine Learning Categories
  • 2.2. Why the Resurgence of Interest in AI/ML?

3. POTENTIAL AI/ML USE CASES IN TELECOM

  • 3.1. Network Operations Monitoring & Management
  • 3.2. Predictive Maintenance
  • 3.3. Fraud Mitigation
  • 3.4. Cybersecurity
  • 3.5. Customer Service & Marketing Virtual Digital Assistants
  • 3.6. Intelligent CRM Systems
  • 3.7. CEM

4. CSP ADOPTION OF AI

  • 4.1. TCS Study Suggests Most CSPs Already Using AI/ML in IT/Networking
  • 4.2. TM Forum Study Suggests More Cautious Adoption of AI/ML
  • 4.3. Customer Experience the Key Driver for AI/ML
  • 4.4. AI/ML in Network Management

5. REAL-WORLD CSP EXAMPLES

  • 5.1. AT&T
  • 5.2. COLT
  • 5.3. Deutsche Telekom
  • 5.4. Globe Telecom
  • 5.5. KDDI
  • 5.6. KT
  • 5.7. SK Telecom
  • 5.8. Swisscom
  • 5.9. Telefónica
  • 5.10. Vodafone

6. CHALLENGES OF APPLYING AI/ML TO NETWORKING

  • 6.1. Data That Is Dirty, Unavailable or Difficult to Access
  • 6.2. Lack of Data Science Talent
  • 6.3. Lack of a Clear Question to Answer
  • 6.4. Limitations of Tools

7. ACADEMIC, SDO, CONSORTIA & OS INITIATIVES

  • 7.1. Academia - Knowledge-Defined Networking
  • 7.2. Standards Development Organizations
  • 7.3. Industry Consortium - Telecom Infra Project
  • 7.4. Open Source - Acumos

8. VENDOR PROFILES

  • 8.1. Afiniti
  • 8.2. AIBrain
  • 8.3. Anodot
  • 8.4. Arago
  • 8.5. Aria Networks
  • 8.6. Avaamo
  • 8.7. B.Yond
  • 8.8. Cardinality
  • 8.9. Guavus
  • 8.10. Intent HQ
  • 8.11. IPsoft
  • 8.12. Nuance Communications
  • 8.13. Skymind
  • 8.14. Subtonomy
  • 8.15. Tupl
  • 8.16. Wise Athena

9. CONCLUSIONS

TERMS OF USE

LIST OF FIGURES

  • Figure 1: Exabytes per Month of Mobile Data Traffic by 2021
  • Figure 2: Commercial LTE Networks Launched
  • Figure 3: LTE Radio Interface Architecture
  • Figure 4: System Architecture Evolution (SAE)
  • Figure 5: Wireless Base Station Applications
  • Figure 6: eNodeB Block Diagram
  • Figure 7: 3GPP User Equipment Definitions
  • Figure 8: Distribution of 5G Demonstrations & Trials by Broad Spectrum Ranges
  • Figure 9: Virtualized EPC & RAN
  • Figure 10: 5G Deployment Scenarios
  • Figure 11: ARM Cortex-A72 64-bit Processor Core
  • Figure 12: Ceva XC12 Block Diagram
  • Figure 13: Ceva PentaG Block Diagram
  • Figure 14: MIPS I6400 Processor IP Core
  • Figure 15: Zynq UltraScale+ RFSoC
  • Figure 16: Integrated Base Station Device Summary
  • Figure 17: Integrated Base Station Device Features
  • Figure 18: Integrated Base Station Device Architecture
  • Figure 19: Programmable MAC/PHY Device Summary
  • Figure 20: Programmable MAC/PHY Device Features
  • Figure 21: Fronthaul Migration
  • Figure 22: Base Station Silicon Vendors
  • Figure 23: Broadcom BCM56670 Radio-Over-Ethernet Switch
  • Figure 24: Octeon Fusion-M CNF73xx
  • Figure 25: Marvell Octeon TX Multicore Processor
  • Figure 26: 4G-5G Fronthaul Using Microsemi PM5990 DIGI-4
  • Figure 27: NXP QorIQ Qonverge B4860 Block Diagram
  • Figure 28: NXP QorIQ Layerscape LX2160A Processor
  • Figure 29: NXP QorIQ Layerscape LA1575 Programmable Wireless Platform
  • Figure 30: Texas Instruments Keystone II TCI6638 Block Diagram
  • Figure 31: LTE CPE Architecture
  • Figure 32: 5G Baseband Devices
  • Figure 33: LTE-Advanced Pro Handset & CPE Baseband Device Summary
  • Figure 34: LTE-Advanced Pro Handset & CPE Baseband Device Features
  • Figure 35: LTE-Advanced Handset & CPE Baseband Device Summary
  • Figure 36: LTE-Advanced CPE & Handset Baseband Device Features
  • Figure 37: LTE CPE & Handset Baseband Device Summary
  • Figure 38: LTE CPE & Handset Baseband Device Features
  • Figure 39: Cat-M & NB-IoT LTE Baseband Devices
  • Figure 40: Cat-M & NB-IoT LTE Baseband Device Features
  • Figure 41: Cat-1 LTE Baseband Devices
  • Figure 42: IEEE 802.11ad/802.11ay (60 GHz) Devices & Modules
  • Figure 43: Handset, CPE, Hub & IoT Silicon Vendors
  • Figure 44: RF Device Applications
  • Figure 45: RF Device Summary
  • Figure 46: RF Device Details

5G, LTE & IOT COMPONENTS VENDORS PROFILED:

  • Altair Semiconductor Ltd., a subsidiary of Sony Corp.
  • Analog Devices Inc. (NYSE: ADI)
  • ARM Ltd., a subsidiary of SoftBank Group Corp.
  • Blu Wireless Technology Ltd.
  • Broadcom Corp. (Nasdaq: BRCM)
  • Cadence Design Systems Inc.
  • Ceva Inc. (Nasdaq: CEVA)
  • eASIC Corp.
  • GCT Semiconductor Inc.
  • HiSilicon Technologies Co. Ltd.
  • Integrated Device Technology Inc. (Nasdaq: IDTI)
  • Intel Corp. (Nasdaq: INTC)
  • Lime Microsystems Ltd.
  • Marvell Technology Group Ltd. (Nasdaq: MRVL)
  • MediaTek Inc.
  • Microsemi Corp., a subsidiary of Microchip Technology Inc. (Nasdaq: MCHP)
  • MIPS, an IP licensing business unit of Wave Computing Inc.
  • Nordic Semiconductor ASA (OSX: NOD)
  • NXP Semiconductors N.V. (Nasdaq: NXPI)
  • Octasic Inc.
  • Peraso Technologies Inc.
  • Qualcomm Inc. (Nasdaq: QCOM)
  • Samsung Electronics Co. Ltd. (005930:KS)
  • Sanechips Technology Co. Ltd., a subsidiary of ZTE Corp. (SHE: 000063)
  • Sequans Communications S.A. (NYSE: SQNS)
  • Texas Instruments Inc. (NYSE: TXN)
  • Unisoc Communications Inc., a subsidiary of Tsinghua Unigroup Ltd.
  • Xilinx Inc. (Nasdaq: XLNX)
Back to Top