表紙
市場調査レポート

ソフトウェア中心型通信ネットワークにおけるサービスチェイニング

Service Chaining in Software-Centric Telecom Networks

発行 Heavy Reading 商品コード 317878
出版日 ページ情報 英文 46 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=101.16円で換算しております。
Back to Top
ソフトウェア中心型通信ネットワークにおけるサービスチェイニング Service Chaining in Software-Centric Telecom Networks
出版日: 2014年11月03日 ページ情報: 英文 46 Pages
概要

ネットワークサービス・チェイニングとは、サービスプロバイダーのネットワークの設計・運用方法を劇的に変化させる可能性のある、技術・プロセスの新たなセットのことを指します。この概念は、キャリア・ネットワーク上でのソフトウェア中心型技術(ネットワーク機能仮想化(NFV)やソフトウェア定義型ネットワーク(SDF)など)との関連性が深く、従来よりも動的でプログラム可能なネットワークサービス展開がしやすくするという特徴があります。サービスチェイニングを利用することで、オペレーターはハードウェア・レベルでネットワークに変更を加えることなく、ソフトウェアの「サービスチェーン」を定義・展開することができます。サービスチェイニングの概念自体は以前からありましたが、その設計が複雑なため、完全な形で実現することはありませんでした。それでも、オペレーター各社はSDFへの迅速な移行を目指して、様々な技術開発・普及活動に取り組んでいます。すでに幾つかの先行導入事例があり、公式な標準化・仕様決定の前から技術の展開・普及を図るべきだとの見解も生まれています。

当レポートでは、通信オペレーターのネットワーク上でのサービス・チェイニングの促進について分析し、概念上の定義やその重要性、商業面での誘因性を高めるための必要条件、近年の主な利用事例、そこから得られた概念上の教訓、サービスチェイニングの実現に必要な技術とサブシステム、各企業が取るべき導入戦略、主要企業(全9社)のソリューションの概要、関連企業・産業への影響度などについて調査・推計しております。

第1章 イントロダクションおよび主な結論

  • 主な分析結果
  • 分析範囲・構造

第2章 ネットワークサービスのチェイニング:いったい何なのか

  • 業務の定義
  • 概念上の事例
  • 業務の事例:企業向けサービス
  • 業務の事例:モバイルサービス
  • 概念の進化

第3章 主な取り組みと関連組織

  • ETSIによるNFV(ネットワーク機能仮想化)の進展状況図
  • IETFによるサービス機能のチェイニング
    • SFCアーキテクチャー
    • SFCのカプセル化(ヘッダ)フォーマット
    • コントロールプレーンのメカニズム
  • Open Networking Foundation (ONF)

第4章 利用事例:サービスチェイニングが使用されている場所

  • どのサービス機能で使用されているのか
  • ユーザーがプログラム可能なネットワークサービス
  • 企業向けサービスチェイニング
  • SGi-LAN
  • レイヤー3サービスのPoP
  • データセンターのネットワーキング

第5章 主要技術

  • サービスチェイニングのシステム
  • サービス機能(VNF:ネットワーク機能仮想化)
  • フローの特定と分類
  • サービスチェーンの制御機能
  • クラウド管理プラットフォームとオーケストレーション
  • ネットワーキング:ソフトウェア定義ネットワーク(SDN)および仮想オーバーレイ

第6章 ベンダー側のアプローチ

  • Alcatel-Lucent
  • Cisco Systems Inc.
  • ConteXtream Inc.
  • Ericsson AB
  • F5 Networks Inc.
  • Huawei Technologies Co. Ltd
  • Juniper Networks Inc.
  • Sandvine Inc.

付録A:著者について

付録B:法的免責事項

図表一覧

目次

Network service chaining is an emerging set of technologies and processes that have the potential to radically change how service provider networks are designed and operated. The concept is inherent to the use of software-centric technologies, such as network virtualization, network functions virtualization (NFV) and software-defined networking (SDN) in carrier networks. In essence, it enables operators to create more dynamic, programmable network services. It could even be considered the apogee of a software-centric network.

Using service chaining, operators will be able to define and configure customized "service chains" in software without having to make changes to the network at the hardware level. In principle, service chains can be coarse-grained (e.g., all consumer smartphone users) or highly granular (e.g., a particular set of smartphone users), depending on the service the operator wishes to provide. The service chaining concept, and its implementation, addresses the requirement for both optimization of the network, through better utilization of resources; and monetization, through the provision of services that are tailored to the customer context.

Service chaining is not a new idea. Insofar as network equipment is hardwired back-to-back to create a processing path, it has always existed. In fact, chaining of network functions in hardware is the de facto operating model. The challenge is that service functions are embedded in discrete and specialized appliances and, as a result, an end-to-end service can be complicated to design, deploy, configure, modify and support. Hardwired service chains are characterized by hand-crafted complexity, with lifecycles that are long and static. This makes changes complex and costly and in turn leads to "network ossification."

In competitive markets, with rapid innovation at the application layer, network ossification prevents operators from being able to efficiently support growing traffic load and limits their ability to address emerging use cases and business models. Ossification, in effect, limits the addressable market for telecom services. For a sector with modest top-line revenue growth (at best), this is obviously a problem that needs to be addressed urgently.

In response, network operators want to accelerate the transition to software-centric, programmable networks. Web-scale service providers have shown some of what can be achieved through the use of SDN and virtualization to offer cloud services, and now operators want to adopt and extend these ideas for the wide-area telecom network. Dynamic network service chaining is a consequence - and in many ways a culmination - of the transition to software-configurable networks in telecom and data center networks.

While the concept of service chaining is important and there is promising market activity, there is not a common definition of network service chaining. However, there are already several proofs-of-concept underway in operator networks, and some limited commercial deployments of dynamic service chaining. Typically, these trials are linked to the use of SDN and virtualization and applied to Layer 4-7 services in mobile (e.g., SGi-LAN) and wireline (e.g., enterprise services) networks. This is to be welcomed; given that agility and flexibility are the objectives of dynamic service chaining, the technology should be deployed commercially in advance of formal standardization and specification.

Service Chaining in Software-Centric Telecom Networks examines the drivers for service chaining in telecom operator networks and identifies the key technology innovations and architectural requirements needed to make the concept commercially attractive. It explores emerging use cases that take advantage of service chaining technology, discusses how different operators and vendors plan to implement the technology in their products and networks, and analyzes what can be learned from putative service chaining deployments in the software-defined data center.

This report profiles eight leading vendors of service chaining solutions, to provide a selection of different approaches to this evolving concept. The intent in the report is not to provide a comprehensive review of all vendors, which would be excessively long, but merely to offer an overview of the types of market propositions in play.

The service chain concept is shown in the excerpt below. Each circle represents a different service function (or network function) that is connected to other services via a network. The arrows represents three different service chains that comprise of a particular set of service functions connected in order.

Excerpt 1: Service Chaining Concept

                     Source: Heavy Reading.

Service chaining occurs along processing paths that reach across the network. Therefore, many organizations are involved in developing use cases and specifications, and many others are impacted by it. At some level, it is arguable that too many competing interests, backing too many specification initiatives, will result in overlap and confusion. In practice, however, we expect to see greater collaboration between groups as service chaining requirements and potential solutions become clearer. The excerpt below summarizes the most influential industry organizations working on service chaining.

Excerpt 2: Industry Organizations With Network Chaining Activities

                     Source: Heavy Reading.

Report Scope & Structure

Service Chaining in Software-Centric Telecom Networks is structured as follows:

Section I is an introduction to the report, with complete report key findings.

Section II introduces network service chaining, explains what it is, and discusses why it's important.

Section III examines the industry organizations that are defining and standardizing service chaining technology.

Section IV investigates use cases and asks where service chaining will be used first.

Section V covers the technologies and subsystems that are needed to realize service chaining in telco networks.

Section VI profiles vendor solutions and product development strategies.

Service Chaining in Software-Centric Telecom Networks is published in PDF format.

Table of Contents

LIST OF FIGURES

I. INTRODUCTION & KEY FINDINGS

  • 1.1. Key Findings
  • 1.2. Report Scope & Structure

II. NETWORK SERVICE CHAINING - WHAT IS IT

  • 2.1. Working Definitions
  • 2.2. A Conceptual Example
  • 2.3. Working Example - Enterprise Services
  • 2.4. Working Example - Mobile Services
  • 2.5. Evolution of the Concept

III. KEY INITIATIVES & ORGANIZATIONS

  • 3.1. ETSI NFV Forwarding Graph
  • 3.2. IETF Service Function Chaining
    • SFC Architecture
    • An SFC Encapsulation (Header) Format
    • Control Plane Mechanisms
  • 3.3. Open Networking Foundation

IV. USE CASES - WHERE WILL SERVICE CHAINING BE USED

  • 4.1. Which Service Functions
  • 4.2. User-Programmable Network Services
  • 4.3. Enterprise Service Chaining
  • 4.4. SGi-LAN
  • 4.5. Layer 3 Service PoP
  • 4.6. Data Center Networking

V. KEY TECHNOLOGIES

  • 5.1. Service Chaining System
  • 5.2. Service Functions (VNFs)
  • 5.3. Flow Identification & Classification
  • 5.4. Service Chain Controller
  • 5.5. Cloud Management Platform & Orchestration
  • 5.6. Networking: SDN & Virtual Overlays

VI. VENDOR APPROACHES

  • 6.1. Alcatel-Lucent
  • 6.2. Cisco Systems Inc.
  • 6.3. ConteXtream Inc.
  • 6.4. Ericsson AB
  • 6.5. F5 Networks Inc.
  • 6.6. Huawei Technologies Co. Ltd.
  • 6.7. Juniper Networks Inc.
  • 6.8. Sandvine Inc.

APPENDIX A: ABOUT THE AUTHOR

APPENDIX B: LEGAL DISCLAIMER

LIST OF FIGURES*

SECTION - I

SECTION - II

  • Figure 2.1: Service Chaining Concept
  • Figure 2.2: Flexible Service Chaining Scenarios
  • Figure 2.3: Enterprise Service Chaining
  • Figure 2.4: Gi-LAN Service Chaining
  • Figure 2.5: Dynamic Service Chaining (Embedded in Network Nodes)

SECTION - III

  • Figure 3.1: Industry Organizations With Network Chaining Activities
  • Figure 3.2: Mapping an NFV Forwarding Graph
  • Figure 3.3: Comparison of Physical & Virtual Forwarding Graphs
  • Figure 3.4: Mapping Virtualized & Non-Virtualized Functions to a Forwarding Graph
  • Figure 3.5: Service Chaining Data Information Model for NFV
  • Figure 3.6: SFC Architecture
  • Figure 3.7: SFC Control Plane Architecture
  • Figure 3.8: SDN/ONF Architecture for Flexible Service Chaining

SECTION - IV

  • Figure 4.1: NTT's Cloud Networking Services
  • Figure 4.2: Enterprise Service Chaining Proof-of-Concept
  • Figure 4.3: Migrating Physical CPE Functions to the Cloud
  • Figure 4.4: Migrating Physical CPE Functions to the Cloud
  • Figure 4.5: Classic Hardwired SGi Service Chain
  • Figure 4.6: Layer 3 Service Pop Architecture
  • Figure 4.7: Andromeda Network Virtualization Stack for Google Cloud Platform

SECTION - V

  • Figure 5.1: Generic Model for Network Service Chaining
  • Figure 5.2: NFV Architecture & Virtual Networking

SECTION - VI

  • Figure 6.1: Nuage Networks Virtualized Service Platform
  • Figure 6.2: ContexNet Architecture Overview
  • Figure 6.3: ContexNet Components
  • Figure 6.4: Overview of Ericsson's Service Chaining Solution
  • Figure 6.5: F5's Platform Applications
  • Figure 6.6: Service Chaining Using F5's Service Gateway
  • Figure 6.7: Huawei's Service Chaining Model (for Gi-LAN)
  • Figure 6.8: Huawei's Network Application Store Concept
  • Figure 6.9: Dynamic Service Chaining in Telco Data Center

* All charts and figures in this report are original to Heavy Reading, unless otherwise noted.

Back to Top