表紙
市場調査レポート

EpiCast Report:血友病の疫学的予測 (2024年まで)

EpiCast Report: Hemophilia - Epidemiology Forecast to 2024

発行 GlobalData 商品コード 344637
出版日 ページ情報 英文 46 Pages
即納可能
価格
本日の銀行送金レート: 1USD=101.32円で換算しております。
Back to Top
EpiCast Report:血友病の疫学的予測 (2024年まで) EpiCast Report: Hemophilia - Epidemiology Forecast to 2024
出版日: 2015年10月06日 ページ情報: 英文 46 Pages
概要

血友病とは、X連鎖性・遺伝性の出血障害で、血液凝固因子のうちVII因子 (血友病Aの場合) またはIX因子 (血友病Bの場合)の生産・機能障害の結果として血液凝固障害が生じる、という特徴があります。血友病患者は (重症度にもよりますが)、関節・筋肉・軟組織・粘膜内部で自然発生的に、あるいは内傷・外傷に伴って出血が生じやすくなります。世界9ヶ国における受診済みの血友病A・Bの有病者数は、2014年には60,671人 (うち米国が約28%)、2024年には61,954人に達する見通しです。血友病は遺伝性疾患のため、一生涯をかけた治療が必要となりますが、近年は高齢化により高血圧患者も増加したため、今後は血友病患者の高血圧対策も必要となるでしょう。

当レポートでは、世界の主要9ヶ国 (米国、ドイツ、フランス、イタリア、スペイン、英国、日本、アルゼンチン、中国) における血友病A・Bの発症状況と今後の見通しについて分析し、疾患の特徴や、現在の有病者の発症状況、今後10年間の有病件数の予測値などを調査・推計しております。

第1章 目次

第2章 イントロダクション

  • 疾患の概略
  • 関連分析
  • 刊行予定の関連分析

第3章 疫学的予測

  • 疾患の背景事情
  • リスク要因と共存症
  • 世界的な傾向
  • 予測手法
    • 利用した情報源
    • 利用しなかった情報源
    • 予測の前提条件と手法
  • 血友病Aの疫学的予測 (今後11年間分)
    • 診断済みの有病者数
    • 診断済みの有病者数:年齢別
    • 診断済みの有病者数:男女別
    • 診断済みの有病者数 (年齢調整済み)
  • 血友病Bの疫学的予測 (今後11年間分)
    • 診断済みの有病者数
    • 診断済みの有病者数:年齢別
    • 診断済みの有病者数:男女別
    • 診断済みの有病者数 (年齢調整済み)
  • 血友病A・Bの疫学的予測 (今後11年間分)
    • 診断済みの有病者数
    • 診断済みの有病者数:男女別
  • 議論
    • 疫学的予測に関する考察
    • 分析の限界
    • 分析の強み

第4章 付録

図表一覧

目次
Product Code: GDHCER091-15

Hemophilia is an X-linked hereditary bleeding disorder, characterized by impaired blood coagulation as a result of deficiencies in the production or function of coagulation factor VIII (hemophilia A) or factor IX (hemophilia B). Because of the deficiency of coagulation factor, hemophilia patients have a tendency for bleeding in joints, muscles, soft tissues, and within mucous membranes, which can be either spontaneous or due to internal or external trauma, depending on the severity of the disease.

In 2014, the 9MM had 60,671 diagnosed prevalent cases of hemophilia A and hemophilia B, around 28% of which occurred in the US. The diagnosed prevalent cases of hemophilia in the 9MM are expected to increase slightly to 61,954 cases by 2024. The US will have the largest proportion of diagnosed prevalent cases of hemophilia A and hemophilia B in the 9MM in 2024 at 29.05%. Because hemophilia is an inherited condition, it requires lifelong treatment. Given the increase in the prevalence of hypertension, with advancing age and increasing life expectancy in hemophiliacs due to advances in treatment, the challenges faced by hemophiliacs and the need for more supportive treatments and care will increase in the near future.

GlobalData epidemiologists forecast the epidemiological trend for hemophilia using data from the WFH Annual Global Survey Report, which is considered the gold standard for hemophilia data. The World Health Organization (WHO) authenticates the WFH data for hemophilia and other bleeding disorders and provides the most accurate data possible for hemophilia globally. The WFH Global Survey Report uses uniform data collection methods for each national member organization (NMO), allowing for a meaningful comparison of the diagnosed prevalent cases across the markets. A major strength of this analysis lays in the use of country-specific data and a uniform methodology across the markets to forecast the prevalent cases of hemophilia.

Scope

  • The Hemophilia EpiCast Report provides an overview of the risk factors and global trends of hemophilia in the 9MM (US, France, Germany, Italy, Spain, UK, Japan, Argentina, and China). In addition, the report includes a 10-year epidemiological forecast of the diagnosed prevalent cases of hemophilia, segmented by type (A and B), sex, and age (starting at ages 0 years) in these markets.
  • The hemophilia epidemiology report is written and developed by Masters- and PhD-level epidemiologists.
  • The EpiCast Report is in-depth, high quality, transparent and market-driven, providing expert analysis of disease trends in the 9MM.

Reasons to buy

The Hemophilia EpiCast report will allow you to -

  • Develop business strategies by understanding the trends shaping and driving the global hemophilia market.
  • Quantify patient populations in the global hemophilia market to improve product design, pricing, and launch plans.
  • Organize sales and marketing efforts by identifying the age groups and sex that present the best opportunities for hemophilia therapeutics in each of the markets covered.
  • Identify the hemophilia type that is most important to your marketing plans.

Table of Contents

1. Table of Contents

  • 1.1. List of Tables
  • 1.2. List of Figures

2. Introduction

  • 2.1. Catalyst
  • 2.2. Related Reports
  • 2.3. Upcoming Related Reports

3. Epidemiology

  • 3.1. Disease Background
  • 3.2. Risk Factors and Comorbidities
  • 3.3. Global Trends
  • 3.4. Forecast Methodology
    • 3.4.1. Sources Used
    • 3.4.2. Sources Not Used
    • 3.4.3. Forecast Assumptions and Methods
  • 3.5. Epidemiological Forecast for Hemophilia A (2014-2024)
    • 3.5.1. Diagnosed Prevalent Cases of Hemophilia A
    • 3.5.2. Diagnosed Prevalent Cases of Hemophilia A by Age
    • 3.5.3. Diagnosed Prevalent Cases of Hemophilia A by Sex
    • 3.5.4. Age-Standardized Diagnosed Prevalence of Hemophilia A
  • 3.6. Epidemiological Forecast for Hemophilia B (2014-2024)
    • 3.6.1. Diagnosed Prevalent Cases of Hemophilia B
    • 3.6.2. Diagnosed Prevalent Cases of Hemophilia B by Age
    • 3.6.3. Diagnosed Prevalent Cases of Hemophilia B by Sex
    • 3.6.4. Age-Standardized Diagnosed Prevalence of Hemophilia B
  • 3.7. Epidemiological Forecast for Hemophilia A and Hemophilia B (2014-2024)
    • 3.7.1. Diagnosed Prevalent Cases of Hemophilia A and Hemophilia B
    • 3.7.2. Diagnosed Prevalent Cases of Hemophilia A and Hemophilia B by Sex
  • 3.8. Discussion
    • 3.8.1. Conclusions on Epidemiological Trends
    • 3.8.2. Limitations of the Analysis
    • 3.8.3. Strengths of the Analysis

4. Appendix

  • 4.1. Bibliography
  • 4.2. About the Authors
    • 4.2.1. Epidemiologists
    • 4.2.2. Reviewers
    • 4.2.3. Global Director of Epidemiology and Health Policy
    • 4.2.4. Global Head of Healthcare
  • 4.3. About GlobalData
  • 4.4. About EpiCast
  • 4.5. Disclaimer

List of Tables

  • Table 1: Relationship of Bleeding Severity with Clotting Factor Level
  • Table 2: Hemophilia - Risk Factors and Comorbidities
  • Table 3: 9MM, Diagnosed Prevalence of Hemophilia A (per 100,000 Population), Both Sexes, All Ages, 2004-2013
  • Table 4: 9MM, Diagnosed Prevalence of Hemophilia B (per 100,000 Population), Both Sexes, All Ages, 2004-2013
  • Table 5: 9MM, Sources and Diagnosed Prevalence Data for Hemophilia A and B
  • Table 6: 9MM, Diagnosed Prevalent Cases of Hemophilia A, Both Sexes, All Ages, N, 2014-2024
  • Table 7: 9MM, Diagnosed Prevalent Cases of Hemophilia A, Both Sexes, by Age, N, Row (%), 2014
  • Table 8: 9MM, Diagnosed Prevalent Cases of Hemophilia A, by Sex, All Ages, N, Row (%), 2014
  • Table 9: 9MM, Diagnosed Prevalent Cases of Hemophilia B, Both Sexes, All Ages, N, 2014-2024
  • Table 10: 9MM, Diagnosed Prevalent Cases of Hemophilia B, Both Sexes, by Age, N, Row (%), 2014
  • Table 11: 9MM, Diagnosed Prevalent Cases of Hemophilia B, by Sex, All Ages, N, Row (%), 2014
  • Table 12: 9MM, Diagnosed Prevalent Cases of Hemophilia, Both Sexes, All Ages, N, 2014-2024
  • Table 13: 9MM, Diagnosed Prevalent Cases of Hemophilia A and Hemophilia B, by Sex, All Ages, N, Row (%), 2014

List of Figures

  • Figure 1: 9MM, Diagnosed Prevalent Cases of Hemophilia A, Both Sexes, All Ages, N, 2014-2024
  • Figure 2: 9MM, Diagnosed Prevalent Cases of Hemophilia A, Both Sexes, by Age, N, 2014
  • Figure 3: 9MM, Diagnosed Prevalent Cases of Hemophilia A, by Sex, All Ages, N, 2014
  • Figure 4: 9MM, Age-Standardized Diagnosed Prevalence of Hemophilia A (per 100,000 Population), by Sex, 2014
  • Figure 5: 9MM, Diagnosed Prevalent Cases of Hemophilia B, Both Sexes, All Ages, N, 2014-2024
  • Figure 6: 9MM, Diagnosed Prevalent Cases of Hemophilia B, Both Sexes, by Age, N, 2014
  • Figure 7: 9MM, Diagnosed Prevalent Cases of Hemophilia B, by Sex, All Ages, N, 2014
  • Figure 8: 9MM, Age-Standardized Prevalence of Diagnosed Hemophilia B (per 100,000 Population), by Sex, 2014
  • Figure 9: 9MM, Diagnosed Prevalent Cases of Hemophilia A and Hemophilia B, Both Sexes, All Ages, N, 2014-2024
  • Figure 10: 9MM, Diagnosed Prevalent Cases of Hemophilia A and Hemophilia B, by Sex, All Ages, N, 2014
Back to Top