表紙
市場調査レポート

卵巣癌 - ファーストインクラスのイノベーション認識と商業化

Frontier Pharma: Ovarian Cancer - Identifying and Commercializing First-in-Class Innovation

発行 GBI Research 商品コード 347859
出版日 ページ情報 英文 65 Pages
即納可能
価格
本日の銀行送金レート: 1USD=106.71円で換算しております。
Back to Top
卵巣癌 - ファーストインクラスのイノベーション認識と商業化 Frontier Pharma: Ovarian Cancer - Identifying and Commercializing First-in-Class Innovation
出版日: 2015年12月01日 ページ情報: 英文 65 Pages
概要

卵巣癌は、女性で6番目に多い癌で、婦人科癌の中でも最も死亡率が高くなっています。5年生存率は、約45%です。卵巣癌のパイプラインには、ファーストインクラスの分子標的に関連する179の製品があります。

当レポートでは、卵巣癌市場について調査分析し、イノベーション事例、臨床・商業的状況、パイプライン製品の評価、プログラム評価、最近の取引などについて、体系的な情報を提供しています。

第1章 目次

第2章 エグゼクティブサマリー

第3章 イノベーション事例

  • 生物製剤の機会が拡大
  • 分子標的の多様化
  • 革新的なファーストインクラス製品 (画期的医薬品) の開発が今も魅力的
  • 規制・償還政策が、ファーストインクラス製品のイノベーションに有利に
  • 持続的なイノベーション
  • レポートガイダンス

第4章 臨床・商業的状況

  • 疾患の概要
  • 疾患の症状
  • 疫学と病因
  • 病態生理
  • 診断
  • 予後
  • 治療アルゴリズム
  • 上市製品の概要

第5章 パイプライン製品イノベーションの評価

  • 卵巣癌治療薬パイプライン:分子タイプ、フェーズ、治療標的別
  • 卵巣癌治療薬市場におけるプログラムの比較分布、パイプライン:治療標的ファミリー別
  • 新しい分子標的によるファーストインクラスパイプラインプログラム

第6章 シグナリング (シグナル伝達) ネットワーク、病因、イノベーションの調整

  • 腫瘍学におけるシグナリングネットワークの複雑さ
  • シグナリング経路、ファーストインクラス分子標的の統合
  • ファーストインクラスマトリクスの評価

第7章 ファーストインクラス標的の評価

第8章 取引と戦略的統合

  • 産業全体のファーストインクラス取引
  • ライセンス取引
  • 共同開発取引
  • ライセンス/共同開発取引に関与しないファーストインクラスプログラム

第9章 付録

図表

目次
Product Code: GBIHC375MR

Executive Summary

Ovarian cancer is the sixth most common cancer in females and it also has the highest mortality rate of gynecological cancers. The five-year survival rate is approximately 45%, although the disease is ultimately fatal in the majority of patients due to a high rate of recurrence. Surgery is generally considered an effective treatment for localized tumors, however the management of recurrent and later-stage disease is largely reliant on cytotoxic chemotherapy regimens.

A highly active ovarian cancer pipeline contains an array of diverse molecule types and molecular targets, in contrast to the market. With the diversity in the pipeline, there is hope that innovative products can make it to market to provide patients with greater therapeutic options, while meeting unmet needs within ovarian cancer. There are 179 ovarian cancer pipeline products associated with a first-in-class molecular target representing 52% of the total pancreatic cancer pipeline products that have a disclosed molecular target. Such a diverse and innovative pipeline implies that approaches to ovarian cancer treatment are changing and first-in-class development is playing a significant role in this.

Scope

Chemotherapy based regimens continue to dominate the market, which has seen few new entrants over the past decade. Lynparza (olaparib) is a key new entrant; however it is only effective in a small patient subset.

What survival benefits do current therapies provide?

What are the current unmet needs that the pipeline needs to address?

The pipeline places increased focus on targeted therapies, including a large number of therapies targeting common oncogenic pathways and signaling intermediates such as PI3K/Akt.

What potential do mAbs have in ovarian cancer treatment?

Will pipeline diversity translate to clinically and commercially successful therapies?

How are common target families, such as intracellular signal transduction associated with pathophysiology?

52% of pipeline products act on a first-in-class target, which is higher than the oncology and industry averages.

Do first-in-class products show strong progression into the later stages?

Why is the greatest number of first-in-class products seen in signal transduction?

First-in-class products differ substantially in their clinical potential, based on their alignment to disease causing pathways

How well are first-in-class targets, such as Notch, aligned to known disease causing pathways?

Which targets are specifically found in early-stage development?

What is the industry-wide interest in these targets?

Co-development deals for first-in-class products are typically higher value than non-first-in-class counterparts.

To what extent does first-in-class status influence deal value and phase?

Can biologics command a greater deal value than other molecule types?

Reasons to buy

  • This report will allow you to -
  • Understand the current clinical and commercial landscape. This includes a comprehensive study of disease pathogenesis, diagnosis, prognosis and the available treatment options available at each stage of diagnosis.
  • Visualize the composition of the ovarian cancer market in terms of dominant molecule types and targets, highlighting what the current unmet needs are and how they can be addressed. This knowledge allows a competitive understanding of gaps in the current market.
  • Analyze the ovarian cancer pipeline, and stratify by stage of development, molecule type and molecular target. There are promising signs in the pipeline that the industry is seeking novel approaches the treating ovarian cancer.
  • Assess the therapeutic potential of first-in-class targets. Using a proprietary matrix, first-in-class products have been assessed and ranked according to clinical potential. Promising early-stage targets have been further reviewed in greater detail.
  • Identify commercial opportunities in the ovarian cancer deals landscape by analyzing trends in licensing and co-development deals and producing a curated list of ovarian cancer therapies that are not yet involved in deals and may be potential investment opportunities.

Table of Contents

1. Table of Contents

  • 1.1. List of Tables
  • 1.2. List of Figures

2. Executive Summary

  • 2.1. Significant Unmet Needs in the Ovarian Cancer Market
  • 2.2. High Proportion of First-in-Class Innovation offers Promise in Ovarian Cancer
  • 2.3. Deal Activity Varies with First-in-Class Status

3. The Case for Innovation

  • 3.1. Growing Opportunities for Biologic Products
  • 3.2. Diversification of Molecular Targets
  • 3.3. Innovative First-in-Class Product Developments Remain Attractive
  • 3.4. Regulatory and Reimbursement Policy Shifts Favor First-in-Class Product Innovation
  • 3.5. Sustained Innovation
  • 3.6. GBI Research Report Guidance

4. Clinical and Commercial Landscape

  • 4.1. Disease Overview
  • 4.2. Disease Symptoms
  • 4.3. Epidemiology and Etiology
  • 4.4. Pathophysiology
    • 4.4.1. High-Grade Serous Subtype
    • 4.4.2. Low-Grade Serous Subtype
    • 4.4.3. Mucinous Carcinoma Subtype
    • 4.4.4. Endometrioid Carcinoma Subtype
    • 4.4.5. Clear Cell Carcinoma Subtype
  • 4.5. Diagnosis
  • 4.6. Prognosis
  • 4.7. Treatment Algorithm
    • 4.7.1. Surgery
    • 4.7.2. First-Line Therapy
    • 4.7.3. Maintenance Therapy
    • 4.7.4. Recurrent Disease and Second-Line Therapy
  • 4.8. Overview of Marketed Products in Ovarian Cancer
    • 4.8.1. Molecule Type and Target Analysis
    • 4.8.2. Innovative Products in Ovarian Cancer Market
    • 4.8.3. Unmet Needs

5. Assessment of Pipeline Product Innovation

  • 5.1. Ovarian Cancer Pipeline by Molecule Type, Phase and Therapeutic Target
  • 5.2. Comparative Distribution of Programs between Ovarian Cancer Market and Pipeline by Therapeutic Target Family
  • 5.3. First-in-Class Pipeline Programs Targeting Novel Molecular Targets

6. Signaling Network, Disease Causation and Innovation Alignment

  • 6.1. Complexity of Signaling Networks in Oncology
  • 6.2. Signaling Pathways and First-in-Class Molecular Target Integration
  • 6.3. First-in-Class Matrix Assessment

7. First-in-Class Target Evaluation

  • 7.1. Pipeline Programs Targeting Mucin 16 and Mucin 1
  • 7.2. Pipeline Programs Targeting Notch
  • 7.3. Pipeline Programs Targeting 3-Phosphoinositide-Dependent Protein Kinase 1
  • 7.4. Pipeline Programs Targeting G2/Mitotic-Specific Cyclin B1
  • 7.5. Pipeline Programs Targeting Cell Division Cycle 7-Related Protein Kinase
  • 7.6. Pipeline Programs Targeting X-Linked Inhibitor of Apoptosis Protein
  • 7.7. Pipeline Programs Targeting Cyclin-Dependent Kinase 2
  • 7.8. Pipeline Programs Targeting PIK3CA
  • 7.9. Pipeline Products Targeting HDAC 10, 4, 5 and 7
  • 7.10. Conclusion

8. Deals and Strategic Consolidations

  • 8.1. Industry-Wide First-in-Class Deals
  • 8.2. Licensing Deals
    • 8.2.1. Licensing Deals by Molecule Type
    • 8.2.2. Licensing Deals by Molecular Target
    • 8.2.3. Conclusion
  • 8.3. Co-development Deals
    • 8.3.1. Co-development Deals by Molecule Type
    • 8.3.2. Co-development Deals by Molecular Target
    • 8.3.3. Conclusion
  • 8.4. First-in-Class Programs Not Involved in Licensing or Co-development Deals

9. Appendix

  • 9.1. References
  • 9.2. Abbreviations
  • 9.3. Research Methodology
  • 9.4. Secondary Research
    • 9.4.1. Marketed Product Heatmaps and Treatment Algorithm
    • 9.4.2. Pipeline Analysis
    • 9.4.3. First-in-Class Matrix Assessment
    • 9.4.4. First-in-Class Target Profiles
    • 9.4.5. Licensing and Co-Development Deals
  • 9.5. Contact Us
  • 9.6. Disclaimer

List of Tables

  • Table 1: Ovarian Cancer Therapeutics, Histological Subtypes and Associated Genetic Mutations
  • Table 2: Ovarian Cancer Therapeutics, Ovarian Cancer Disease Staging
  • Table 3: Key Features and Pipeline Activity of Mucin 1
  • Table 4: Key Features and Pipeline Activity of Mucin 16
  • Table 5: Notch Profile
  • Table 6: PDPK1 Profile
  • Table 7: CCNB1 Profile
  • Table 8: CDC7 Profile
  • Table 9: XIAP Profile
  • Table 10: CDK2 Profile
  • Table 11: PIK3CA Profile
  • Table 12: HDAC Profile
  • Table 13: List of Abbreviations (Part 1)
  • Table 14: List of Abbreviations (Part 2)

List of Figures

  • Figure 1: Innovation Trends in Product Approvals, Number of Product Approvals by FDA and Five-Year Moving Average of Products Approvals (%), 1987-2012
  • Figure 2: First-in-Class and Non-First-in-Class Products, Sales Performance after Marketing Approval ($m)
  • Figure 3: Heatmap for First-Line Marketed Products
  • Figure 4: Heatmap for Maintenance Marketed Products
  • Figure 5: Heatmap for Recurrent Disease Marketed Products
  • Figure 6: Overview of Marketed Products in Ovarian Cancer
  • Figure 7: Overview of Pipeline Products
  • Figure 8: Molecular Targets in Ovarian Cancer Pipeline
  • Figure 9: Pipeline by Molecular Targets and Stage of Development
  • Figure 10: Molecular Target Family Comparison, Pipeline and Marketed Products
  • Figure 11: Molecular Target Family Comparison, Pipeline First-in-Class and Established Molecular Targets
  • Figure 12: Percentage of First-in-Class Products within Ovarian Cancer Pipeline Molecular Target Families (%)
  • Figure 13: Percentage of First-in-Class Products within Ovarian Cancer Pipeline by Stage of Development (%)
  • Figure 14: First-in-Class Products in Ovarian Cancer Pipeline (Part 1)
  • Figure 15: First-in-Class Products in Ovarian Cancer Pipeline (Part 2)
  • Figure 16: First-in-Class Products in Ovarian Cancer Pipeline (Part 3)
  • Figure 17: Target Matrix Assessment (Part 1)
  • Figure 18: Target Matrix Assessment (Part 2)
  • Figure 19: Target Matrix Assessment (Part 3)
  • Figure 20: Programs Targeting Mucin 1
  • Figure 21: Products Targeting Mucin 16
  • Figure 22: Products Targeting Notch
  • Figure 23: Products Targeting 3-Phosphoinositide-Dependent Protein Kinase 1
  • Figure 24: Products Targeting G2/Mitotic-Specific Cyclin B1
  • Figure 25: Products Targeting Cell Division Cycle 7-Related Protein Kinase
  • Figure 26: Products Targeting X-Linked Inhibitor of Apoptosis Protein
  • Figure 27: CDK2 Targeting Products
  • Figure 28: PIK3CA Targeting Products
  • Figure 29: HDAC 10, 4, 5 and 7 Targeting Products
  • Figure 30: Industry-Wide Deals by Stage of Development, 2006-2014
  • Figure 31: Industry Licensing Deal Values by Stage of Development ($m), 2006-2014
  • Figure 32: Licensing Deal Value
  • Figure 33: Licensing Deals by Year, 2006-2015
  • Figure 34: Licensing Deals by Stage of Development
  • Figure 35: Licensing Deal Value by Stage of Development and Molecule Type
  • Figure 36: Licensing Deal Value by Molecular Target
  • Figure 37: Co-development Deal Value
  • Figure 38: Co-development Deals by Year, 2006-2015
  • Figure 39: Co-development Deals by Stage of Development
  • Figure 40: Co-development by Stage of Development and Molecule Type
  • Figure 41: Co-development by Stage of Development and Molecular Target
  • Figure 42: Ovarian Cancer First-in-Class Therapies Not Involved in Deals (Part 1)
  • Figure 43: Ovarian Cancer First-in-Class Therapies Not Involved in Deals (Part 2)
  • Figure 44: Ovarian Cancer First-in-Class Therapies Not Involved in Deals (Part 3)
Back to Top