Technological Advancements in Solid State Batteries for Electric Vehicles

出版日: | 発行: Frost & Sullivan | ページ情報: 英文 52 Pages | 納期: 即日から翌営業日

価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=111.75円
出版日: 2020年12月21日
発行: Frost & Sullivan
ページ情報: 英文 52 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次

従来のリチウムイオン電池は、動作電圧が広いため、液体有機電解質を使用しています。しかし、液体電解質は、その高い揮発性と可燃性のために、バッテリーの安全性に影響を与える主な要因となっています。これは、世界中で指摘されているEV火災事故の背後にある主な理由の1つです。固体電解質を採用した全固体電池 (SSB) は、安全性が向上するとともに、エネルギー密度の高い電池の開発に道を開き、長距離EVを可能にすることで大きな関心を集めています。SSBは動作温度も広く、従来のバッテリーの電解質の凍結に悩まされる寒い国でもEVを動作させることができます。




  • Strategic Imperative 8
  • 全固体電池の成長に対する上位3つの戦略的インペラティブの影響
  • Growth Pipeline Engine について
  • 成長機会が Growth Pipeline Engine に燃料を供給

第1章 エグゼクティブサマリー

  • 調査範囲
  • 分析フレームワーク-Frost & Sullivanのコアバリュー
  • 調査手法

第2章 全固体電池-概要

  • 全固体電池の出現
  • EVからの全固体電池の需要は2040年までに1500GWhに達する見込み
  • 電気自動車用全固体電池が提供する重要な価値提案
  • 固体電解質の種類
  • 全固体電池のエネルギー密度と電圧の比較

第3章 全固体電池の主要な研究開発の重点分野

  • 全固体電池のスケールアップを成功させるために克服すべき重要な課題
  • 室温のイオン伝導率と界面応力の緩和は、大量生産に不可欠
  • 複合およびハイブリッド固体電解質は、デンドライト形成を克服するために研究

第4章 CTA (注目企業)

  • QuantumScape Corporation
  • Ionic Materials Inc.
  • Solid Power
  • Ilika

第5章 自動車OEMによる注目すべき開発

  • 自動車OEMは、スタートアップ企業や研究センターと協力して、全固体電池を搭載したEVへの道を切り開く

第6章 全固体電池-特許情勢

  • 中国と日本が特許活動でリード
  • トヨタは、全固体電池の研究開発のパイオニアであり、特許所有権のライオンのシェアを持つ

第7章 成長機会

  • 成長機会1:破壊的技術
  • 成長機会1:長距離でより安全な電気自動車を可能にする破壊的な全固体電池
  • 成長機会2:戦略的パートナーシップ
  • 成長機会2:全固体電池の商品化を推進するための自動車OEMと新興企業間のパートナーシップ
  • 全固体電池の成功と成長のための戦略的インペラティブ

第8章 主要な連絡先

第9章 次のステップ

Product Code: D9AF

Game-Changing Solid-state Batteries Will Push the Future Electric Vehicles to the Next Level

Technological Advancements in Solid-state Batteries for EVs

The trend of decarbonization of the global automotive sector has been the main factor driving the research on novel battery materials, owing to their prominence as a key enabling technology for the electrification of the transportation sector. Li-ion batteries have become synonymous to EVs in the last 10 years. Nickel cobalt aluminum oxide (NCA), nickel manganese cobalt oxide (NMC) and lithium iron phosphate (LFP) are the widely used Li-ion battery chemistries today. These battery chemistries paved way for the massive reduction of battery pack costs, down from more than $1000/kWh in 2010 to $110-120 per kilowatt-hour in 2020. Today, the demand for EVs is growing exponentially as is the growing need for long-range EVs coupled with improved safety and fast charging capabilities. The current state-of-the-art Li-ion batteries used in popular EVs cannot necessarily cater to such emerging needs, which requires multi-fold improvements to safety and energy density without increasing the cost of battery packs.

Conventional Li-ion batteries employ liquid organic electrolyte owing to wide operating voltages. However, liquid electrolyte is the main component influencing the safety of the batteries due to their high volatility and flammability. This is one of the main reason behind some of the EV fire accidents noted across the globe. SSBs that employ solid electrolytes have been gaining significant interest owing to their increased safety while paving way for the development of batteries with higher energy densities, enabling long-range EVs. SSBs also have wide operating temperatures, providing the ability to operate EVs even in cold countries where conventional batteries will suffer from freezing of electrolytes. The study highlights the necessity for SSBs and discusses the major challenges faced by solid-state battery technology development in gaining wide-scale market adoption and competitiveness. The study provides a review of key research focus areas and technological challenges to overcome within SSBs. Additionally, it presents key stakeholders involved in technology development and notable developments and initiatives by automotive OEMs. It also features patent landscaping of SSBs, highlighting key patent owners/assignees, patenting trend in the last 10 years and patent jurisdiction with highest activity.

The study covers the following topics:

  • Solid-state batteries- overview and current technology trends
  • Factors driving adoption and development of solid-state batteries
  • Key properties, drawbacks, R&D activities
  • Technology ecosystem: innovations and key stakeholders
  • Notable developments by automotive OEMs
  • Patent landscape of SSBs
  • Growth opportunities in SSBs

Table of Contents

Strategic Imperatives

  • The Strategic Imperative 8™
  • The Strategic Imperative 8™
  • The Impact of the Top Three Strategic Imperatives on Growth of Solid-state Batteries
  • About the Growth Pipeline EngineTM
  • Growth Opportunities Fuel the Growth Pipeline Engine™

1.0 Executive Summary

  • 1.1 Research Scope
  • 1.2 Analysis Framework - Frost & Sullivan's Core Value
  • 1.3 Research Methodology

2.0 Solid-state Batteries - An Overview

  • 2.1 Emergence of Solid-state Batteries
  • 2.2 Demand from EV for Solid-state Batteries to Reach 1500GWh by 2040
  • 2.3 Key Value Proposition Offered by Solid-state Batteries For Electric Vehicles
  • 2.3 Key Value Proposition Offered by Solid-state Batteries for Electric Vehicles (Continued)
  • 2.4 Types of Solid Electrolytes
  • 2.5 Energy Density and Voltage Comparison of Solid-state Batteries

3.0 Key R&D Focus Areas in Solid-state Batteries

  • 3.1 Key Challenges to Overcome for Successful Scaling-up of Solid-state Batteries
  • 3.2 Room Temperature Ionic Conductivity and Mitigating of Interface Stress are Vital for Mass Production
  • 3.3 Composite and Hybrid Solid Electrolytes are Being Investigated to Overcome Dendrite Formation

4.0 Companies to Action

  • 4.1 QuantumScape Corporation
  • 4.2 QuantumScape
  • 4.3 Ionic Materials Inc.
  • 4.4 Ionic Materials Inc.
  • 4.5 Solid Power
  • 4.6 Solid Power
  • 4.7 Ilika
  • 4.8 Ilika

5.0 Notable Developments by Automotive OEMs

  • 5.1 Automotive OEMs Collaborate with Startups and Research Centers to Pave Way for Solid-state Batteries Powered EVs
  • 5.1 Automotive OEMs Collaborate with Startups and Research Centers to Pave Way for Solid-state Batteries Powered EVs (Continued)

6.0 Solid-state Batteries - Patent Landscape

  • 6.1 Chinese and Japanese Jurisdictions Lead the Patenting Activity
  • 6.2 Toyota is the Pioneer of Solid-state Battery Research and Development with a Lion's Share of Patent Ownership

7.0 Growth opportunities

  • 7.1 Growth Opportunity 1: Disruptive Technologies
  • 7.2 Growth Opportunity 1: Disruptive Solid-state Batteries Enabling Long-Range and Safer Electric Vehicles
  • 7.3 Growth Opportunity 2: Strategic Partnerships
  • 7.4 Growth opportunity 2: Partnerships Between Automotive OEMs and Startups to Drive Commercialization of Solid-state Batteries
  • 7.5 Strategic Imperatives for Success and Growth of Solid State Batteries

8.0 Key Contacts

  • 8.1 Key Industrial Contacts

9.0 Next Steps

  • 9.1 Your Next Steps
  • 9.2 Why Frost, Why Now?
  • Legal Disclaimer