特集 : 国別レポートが13,000件から検索可能になりました!

特集 : 海外市場の委託調査がセミカスタムベースでお手軽にできます

株式会社グローバルインフォメーション
表紙
市場調査レポート
商品コード
951783

自動運転トラック輸送の機会と利用例:2040年までの予測

Opportunities and Use Cases for Autonomous Trucking, Forecast to 2040

出版日: | 発行: Frost & Sullivan | ページ情報: 英文 91 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=105.58円
自動運転トラック輸送の機会と利用例:2040年までの予測
出版日: 2020年07月20日
発行: Frost & Sullivan
ページ情報: 英文 91 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

自動運転トラックは、既存のボトルネックを克服し、急速に進化するエコシステムに対応するための次の論理的な飛躍と見なされています。レベル1およびレベル2の車両は、M&HCV (中型&大型商用車) 市場全体の約88%のシェアを占め、レベル4は2040年までに約12%のシェアを占めるでしょう。自動運転トラックは、 米国では2030年までに一般貨物だけで年間47億5000万米ドルの節約を可能にします。

当レポートでは、世界の自動運転トラック輸送市場について調査し、自動運転トラック技術、自動運転トラック技術の用途および地域・自動運転レベル別による搭載予測、技術進歩の見通し、今後の成長機会などについて分析しています。

目次

エグゼクティブサマリー

  • 主な調査結果・市場の展望
  • 自動運転の価値提案
  • 自動運転システムはトラック・アズ・ア・サービス (Truck-as-a-Service) を可能に
  • 自動運転トラック輸送への主な影響
  • トラックにおけるADAS機能の予測:搭載車両の販売台数
  • 自動運転の定義
  • 車両オートメーションのレベル
  • SAE定義の影響
  • 自動運転トラックへのシフトに影響を与える要因
  • 自動運転トラック輸送の市場動向
  • 調査範囲
  • 調査の目的
  • この調査が回答する主な質問

自動運転トラック技術:概要

  • 自動運転トラックの機能ブロック図
  • ADAS機能:用途との関連性
  • CVにおける自動運転の主な課題
  • トラックにおける自動運転技術の影響
  • 自動運転が業界の利害関係者に与える影響
  • 自動運転トラック市場へのCOVID-19の影響
  • COVID-19シナリオにおけるADAS市場評価

自動運転トラック技術の用途

  • 物流:売り込み
  • 港湾:発送
  • ごみ:収集から廃棄まで
  • 自動運転トラックの実装ロードマップ:使用例
  • MCVへのL1・L2 ADAS搭載予測:EU
  • HCVへのL1・L2 ADAS搭載予測:EU
  • MCVへのL1・L2 ADAS搭載予測:北米
  • HCVへのL1・L2 ADAS搭載予測:北米
  • HDトラックにおける自動化の進展
  • 自動運転トラックの市場価値:追加装備コストの予測
  • 自動運転トラックのテレオペレーション
  • 貨物輸送ハブ:長距離自動運転トラック向け
  • トラックプラトーニングのメリットと課題
  • プラトーニング:フェーズI、II、III

自動運転トラックの主な要素:技術・投資・インフラ

  • 予備インフラの開発:進行中のフィールドプロジェクト
  • 自動運転トラック操縦向けV2Xテクノロジーの進化
  • 主要OEMの自動運転製品パイプライン計画
  • 自動運転製品のロードマップ
  • 注目の自動運転企業:Frost & Sullivanの見通し
  • 業界における戦略的パートナーシップ
  • 自動運転トラックのエコシステム
  • エコシステム参入企業によるバリューマップ
  • 自動運転トラックの構成要素
  • 自動運転トラック技術のロードマップ:ハードウェアへの注目
  • 自動運転トラック技術のロードマップ:ソフトウェアへの注目
  • 将来の車両開発のためのプラットフォームベースのアプローチ
  • 技術進化:レーダーモジュール
  • 技術進化:LiDARモジュール
  • 技術進化:前方カメラモジュール
  • センサーデータフュージョンの役割:自動化レベル別
  • 自動運転・センサーのレベル

完全自動運転車:進歩の展望

  • 自動運転車両の検証とテスト
  • AVテストおよび開発:北米
  • AVに関する米国の立法イニシアチブ
  • 自動化CVのテストのためのEU加盟国のイニシアチブ
  • 規制の概要:北米および欧州
  • パイロット、試験、テスト:主要OEM
  • パイロット、試験、テスト:主要な新興企業
  • 当局の取り組みと調査プロジェクト

貨物輸送モデル予測:L4自動運転車両向け

  • L4 AV予測:一般貨物
  • L4自動運転トラックの普及:セグメント別
  • 年間運送費の見積もり:一般運送費

成長機会

  • 成長機会1:アプリケーションと拡張
  • 成長機会2:規制と責任
  • 成長機会3:投資とパートナーシップ
  • 成功と成長のための戦略的必須事項

結論

  • 4大予測
  • 免責事項

付録

目次
Product Code: K3B0-18

Level 1 and Level 2 Vehicles will Account for Around 88% Share of the Overall M&HCV Market, and Level 4 Around 12%, by 2040. Autonomous Trucks will Enable Annual Savings of $4.75 Billion in General Freight Alone by 2030 in the United States

Global trucking demand is on the rise with the consistent increase in capacity, need for faster transfer influenced by economic developments, new business ventures, and changing buying patterns. However, the trucking industry in general is plagued by concerns like driver shortage, vehicle price increases, fuel price volatility, road safety, and performance limitations amidst rapidly transformative freight handling, stocking, and distribution practices as well as infrastructure changes. Trucking, however, has remained conventional in general. Digitalization and the advent of technology have helped identify gaps and harness efficiency to the best.

Autonomous trucks are viewed as the next logical leap to overcome existing bottlenecks and to keep pace with the rapidly evolving ecosystem. The COVID-19 pandemic has underlined the need for autonomous trucks and their effectiveness during emergencies. With this pandemic, the industry faces issues such as driver shortage and severe commodity demand triggered by panic shopping. Autonomous vehicles (AVs) offer a solution to both the aforementioned with the capability of driving longer hours and safely. Logistics and shipping operators have been provided with a strong case to include self-driving trucks in their fleet as the means of a response action plan in the event of unforeseen emergencies.

Unlike humans with the limitation of operating hours, systems can operate trucks 24x7 effectively, increasing commodity flow within the freight value system. Perception and visual systems can acts as additional eyes to the driver, while analytics and predictive algorithms enhance attentiveness, thus helping the driver traverse through unforeseen events. Cost effectiveness of autonomous trucks will aid fleet operators achieve faster return on investment (RoI) and help address freight supply pressure.

Although the technology required to make trucks completely autonomous without drivers is still very nascent, the achieved capabilities have a variety of application scope. Features such as Advanced Emergency Braking, Adaptive Cruise Control, Lane Change Assist, and Reverse Assist are the first steps towards achieving a working package in the near future, while individually acting as safety and driver assist functions. On the basis of SAE classification of the levels of autonomy, the industry is already well accustomed to absorb Level 1 and Level 2 technologies. The Level 1 feature is already predominant in the medium and heavy commercial vehicle (MHCV) segment with an estimated penetration of 45%, which is expected to grow exponentially, driven by regulatory stimulus, and reach 70% by 2020. All trucks are expected to possess at least Level 1 capability by 2030. Widespread launch and commercialization of the Level 2 feature is expected starting 2020, with its penetration forecast to reach 72% by 2040. OEMs are expected to skip Level 3 autonomy due to its similarity in terms of technology, functionality, and incremental costs with Level 4.

Achieving Level 4 trucking capability will be a major milestone that will enable trucks to operate without human intervention at any stage. Although deployment is still distant, Level 4 is the major focal point for manufacturers and start-ups, with several pilot runs and trials already in progress. Level 4 trucks are expected to be commercialized by 2025 and contribute to ~6.4% of the total general freight tonnage carried annually in the United States by 2040, which will lead to savings of ~$4.75 billion on the annual freight bill.

North America and Europe are leading the global autonomous truck transition with many industry stakeholders based out of or testing vehicles in these regions. Cross-brand platooning trials were conducted in European test beds to understand the applicability scope of the technology. Many cities are upgrading their underlying infrastructure to enable V2V and V2X transmissions needed for trucks to operate autonomously. Government-funded initiatives with collaborative efforts from multiple and diverse industry participants are being done to fast-track the development of autonomous trucks. Liability remains one of the most significant hurdles for autonomous driving. Regulations remain rudiment and not exhaustive in terms of functional requirements and are very conservative with respect to deployment on public roads. In effect, they mandate a certain level of safety features to be a requirement for the sale and registration of trucks. Industry stakeholders need to be provided with a comprehensive framework and guidance plan to explore, take next steps, and invest suitably in relevant development areas.

Incumbent OEMs such as Daimler, Volvo, Paccar, Scania, and MAN are spearheading the transition with development already having reached the testing phases. Level 1 and Level 2 features are being offered both as standard and optional based on regional preferences. Start-ups suck as Peloton Technology, TuSimple, Embark Trucks, and Waymo have taken noticeable steps to potentially capture market in large volumes. Technology and algorithm providers are key players in development of technology; hence OEMs are acquiring and engaging in partnerships and alliances to leverage domain expertise and to keep pace with the transition.

Table of Contents

Executive Summary

  • Key Findings and Market Outlook
  • Autonomous Driving Value Proposition
  • Autonomous Systems will Enable Truck-as-a-Service
  • Major Influences on Autonomous Trucking-2020 to 2040
  • Forecast of ADAS Features in Trucks-By Sales Unit with Fitments
  • Automated Driving Definitions
  • Levels of Vehicle Automation
  • Impact of SAE Definitions
  • Factors Influencing the Shift towards Autonomous Trucking
  • Market Trends in Autonomous Trucking
  • Research Scope
  • Research Aims and Objectives
  • Key Questions this Study will Answer

Autonomous Trucking Technology-Overview

  • Functional Block Diagram for Autonomous Trucks
  • ADAS Features-Relevance to Usage Applications
  • Key Challenges to Autonomous Driving in CVs
  • Implications of Autonomous Technology in Trucks
  • Impact of Autonomous Driving on Industry Stakeholders
  • Impact of COVID-19 on the Autonomous Truck Market
  • ADAS Market Assessment in the COVID-19 Scenario

Application of Autonomous Trucking Technologies in 2019, 2030, and 2040

  • Logistics-Make to Sale
  • Port-Ship to Dispatch
  • Refuse-Collection to Disposal
  • Implementation Roadmap of Autonomous Trucks-By Use Cases
  • L1 and L2 ADAS Fitment Forecast for MCVs-EU
  • L1 and L2 ADAS Fitment Forecast for HCVs-EU
  • L1 and L2 ADAS Fitment Forecast for MCVs-North America
  • L1 and L2 ADAS Fitment Forecast for HCVs-North America
  • Progression of Automation in HD Trucks
  • Autonomous Truck Market Value-Forecast for Incremental Fitment Cost
  • Tele-operation for Autonomous Trucks
  • Freight Transfer Hubs-For Long-haul Autonomous Trucks
  • Truck Platooning Benefits and Challenges
  • Platooning-Phases I, II, and III

Key Elements of Autonomous Trucking-Technology, Investments, and Infrastructure

  • Supplemental Infrastructure Development-Ongoing Field Projects
  • V2X Technology Evolution for Piloting Autonomous Trucks
  • Autonomous Product Pipeline Plan of Major OEMs
  • Autonomous Product Roadmap
  • Autonomous Companies to Look Out For-A Frost & Sullivan Perspective
  • Strategic Partnerships in the Industry
  • Autonomous Trucking Ecosystem
  • Value Map by Ecosystem Participants
  • Building Blocks of an Autonomous Truck
  • Autonomous Truck Technology Roadmap-Hardware Focus
  • Autonomous Truck Technology Roadmap-Software Focus
  • Platform-based Approach for Future Vehicle Development
  • Technology Evolution-Radar Module
  • Technology Evolution-LiDAR Module
  • Technology Evolution-Forward Camera Module
  • Role of Sensor Data Fusion by Level of Automation
  • Levels of Autonomous Driving and Sensors

Full Autonomous Vehicles-Progression Outlook

  • Validation and Testing of Automated Vehicles
  • AV Testing and Deployment Laws-North America
  • AV Testing and Deployment Laws-North America (continued)
  • Legislative Initiatives in the United States for AVs
  • EU Member States' Initiatives for Testing of Automated CVs
  • Regulatory Overview-North America and Europe
  • Pilots, Trials and Testing-Major OEMs
  • Pilots, Trials and Testing-Major Start-ups
  • Authority Initiatives and Research Projects

Freight Model Forecast for 2030-For L4 Autonomous Vehicles

  • L4 AV Forecast-General Freight
  • Penetration of L4 Autonomous Trucks-By Segment
  • Estimation of Annual Freight Cost-For General Freight

Growth Opportunities

  • Growth Opportunity 1-Applications and Expansion
  • Growth Opportunity 2-Regulations and Liability
  • Growth Opportunity 3-Investments and Partnerships
  • Strategic Imperatives for Success and Growth

The Last Word

  • 4 Big Predictions
  • Legal Disclaimer

Appendix

  • List of Acronyms
  • Market Engineering Methodology
  • List of Exhibits
  • List of Exhibits (continued)
  • List of Exhibits (continued)
  • List of Exhibits (continued)
  • List of Exhibits (continued)
株式会社グローバルインフォメーション
© Copyright 1996-2020, Global Information, Inc. All rights reserved.