デフォルト表紙
市場調査レポート
商品コード
950641

水素生成・水素分離を可能にする技術ブレークスルー

Technology Breakthroughs Enabling Hydrogen Generation and Separation

出版日: | 発行: Frost & Sullivan | ページ情報: 英文 75 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=115.03円
水素生成・水素分離を可能にする技術ブレークスルー
出版日: 2020年06月30日
発行: Frost & Sullivan
ページ情報: 英文 75 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

水素は地球に豊富にある資源です。ただし、軽量のエネルギーキャリア原子は、大気中に単一の形態では存在しません。水素は、水や天然バイオマスなどの再生可能資源だけでなく、化石燃料などの非再生可能資源から熱化学ルート、生物学的ルート、電解質ルートを介して抽出できます。

当レポートでは、水素生成・水素分離を可能にする技術について調査分析し、現在の技術、新興の技術、地域別の主要影響要因などについて、体系的な情報を提供しています。

目次

第1章 エグゼクティブサマリー

第2章 代替エネルギー源としての水素

  • クリーンかつ炭素排出量ゼロのエネルギー源としての水素の開発
  • 北米・欧州の自動車・エネルギー・電力供給業界における水素エネルギーを採用することへの高い関心
  • アジア太平洋地域のグリーン水素に関連するR&Dへの高い関心
  • アジア太平洋地域の自動車・エネルギー・電力供給業界における水素エネルギーの採用の可能性
  • 欧州のエネルギー・電力供給業界におけるグリーン水素の採用への高い関心
  • 北米・アジア太平洋地域の政府機関による資金調達活動の増加
  • 欧州における官民イニシアティブの混合

第3章 技術評価:水素生成

  • 水素生成の3つの主要ルート
  • 熱化学ルートは水素生成で確立されている
  • 従来の水素生成は主に改質プロセスによる
  • 高性能でコスト効率の高い改質技術
  • ガス化プロセスは石炭またはバイオマス
  • 熱分解はよく知られた高温プロセスです
  • 電解質ルートは従来の水素生成に広く使用
  • 将来的な注目は電解質ルート
  • 生物学的ルートも水素生成で研究中
  • マイクロ波とダウンホール変換
  • 水の分解と光電気分解
  • 水素生成の改質技術の比較分析
  • 水素発生の熱化学技術の比較分析
  • 水素生成の電解質ルートの比較分析
  • 水素生成の生物学的ルートと再生可能ルートの比較分析
  • 高性能の水素発生プロセスを開発する効果的な触媒技術

第4章 イノベーション指標:水素生成

  • 欧州・アジア太平洋地域の水素生成の電解質ルート技術
  • 触媒技術による水素生産における非再生可能エネルギーの採用
  • 欧州・アジア太平洋地域の水素生産における熱化学ルートの採用
  • 欧州地域の生物学的ルートからの水素生産における将来のイノベーション
  • アジア太平洋・南米地域の生物学的ルートからの水素生産の研究
  • 北米・欧州地域の水素生産における再生可能エネルギーの採用
  • ハイブリッドプロセスによる水素生産における再生可能エネルギーの使用
  • 水素生成技術に関する特許活動
  • 中国における水素生成に関する研究への高い関心

第5章 技術評価:水素分離

  • 水素分離技術は不純物を取り除くために不可欠
  • 吸収は従来の水素分離技術
  • レドックス反応は高温分離プロセス
  • ガス膜分離は新興プロセス
  • 水素分離の吸収プロセスの比較分析
  • 水素分離技術としてのレドックス反応とガス膜分離の比較分析

第6章 イノベーション指標:水素分離

  • レドックス反応の効率
  • 吸収技術の商業化
  • 吸収・膜技術による水素分離プロセスの最適化
  • ガス膜分離
  • 水素分離プロセスの特許活動
  • 水素分離に関する研究

第7章 注目すべき企業

  • 低炭素触媒技術によるグレー水素とブルー水素の生産
  • 自動車業界におけるグリーン水素の採用の実現可能性
  • グリーン水素生成の膜技術に対する持続可能な代替案
  • 海水から水素を生成する実現可能性
  • 太陽光から水素への技術

第8章 成長機会

  • 水素発生と分離技術の採用ロードマップ
  • 水素発生と分離プロセスの成長機会
  • 戦略的必須事項:重要成功要因
  • 成長機会:高性能水素発生と分離プロセスの将来の発展

第9章 主な連絡先

  • 業界の連絡先
  • 免責事項
目次
Product Code: D953

Advances in Catalysts, Absorbents, and Membrane Technologies Aid in Developing High-performance, Cost-efficient Hydrogen Generation and Separation Processes

Hydrogen is an earth abundant resource; however, the lightweight energy carrier atoms do not exist in its single form in the atmosphere. Hydrogen can be extracted from renewable sources such as water and natural biomass as well as non renewable sources such as fossil fuels through the thermochemical route, biological route and the electrolyte route. The hydrogen separation process compromises of absorption, redox reaction and gas membrane separation processes. The thermochemical route was initially introduced as the hydrogen generation process from fossil fuel, coal and natural gas with the absorption and redox reaction as the hydrogen separation process. However, these processes generate high carbon emission and involve high energy consumption, hence there has been gradual interest in developing hydrogen from renewable resources from biomass and water which results in low or zero carbon emission through the electrolyte and biological route. However, most of the commercialized electrolyte route technologies require high energy consumption and high cost catalyst, while the technologies of the biological route is at nascent stage. Apart from that there has been interest in emerging technology from renewable energy such as solar and wind energy in generating a sustainable approach on hydrogen generation and separation processes in the next 10 years.

Across regions, there has been continuous research work on technology development of coatings, catalysts, absorbents, and membranes within the hydrogen generation and separation processes in developing a cost-efficient process. There has been high interest in collaborations among research institutes across the regions such as the collaboration between University of Ontario Institute of Technology, Canada with Imperial College London, UK in developing sustainable solutions for thermochemical processes in hydrogen generation.

There has growing interest within the European region on commercializing thermochemical route process for instance pyrolysis and the catalytic reforming in generating hydrogen from biomass into hydrogen energy as the effort on associating the agriculture and energy industry within the region.

This research service titled "Technology Breakthroughs Enabling Hydrogen Generation and Separation" provides a review of both current and emerging technologies in hydrogen generation and separation processes The research service highlights the key factors that influence R&D and adoption efforts across various geographic regions.

Table of Contents

1.0. Executive Summary

  • 1.1. Research Scope
  • 1.2. Research Methodology
  • 1.3. Enhancing Hydrogen Generation and Separation Processes through Coating, Catalyst, Absorbent and Membrane Technology Development
  • 1.4. Overview of Hydrogen Production as Energy Source
  • 1.5. Hydrogen Refining and Storage Process Flow

2.0. Hydrogen as an Alternative Energy Source

  • 2.1. Developing Hydrogen as a Clean and Zero Carbon Emission Source of Energy
  • 2.2. High Interest in adopting Hydrogen Energy within Automotive, Energy and Power Supply Industries across North America and Europe
  • 2.3. High Interest in R&D Efforts Related to Green Hydrogen in APAC Region
  • 2.4. Potential Adoption of Hydrogen Energy in the Automotive, Energy and Power Supply Industries in the Asia Pacific Region
  • 2.5. High Interest in Adopting Green Hydrogen within the Energy and Power Supply Industries across Europe
  • 2.6. Increasing Funding Activities by Governmental Agencies in North America and Asia Pacific
  • 2.7. Mix of Government and Private Initiatives in Europe

3.0. Technology Assessment- Hydrogen Generation

  • 3.1. Three Main Routes for Hydrogen Generation
  • 3.2. Thermochemical Routes are Considered to be Established for Hydrogen Generation
  • 3.3. Conventional Hydrogen Generation is Mostly through Reforming Processes
  • 3.4. Aqueous Phase and Plasma Reforming Gaining Focus as High Performance and Cost Efficient Reforming Techniques
  • 3.5. Gasification Processes Utilize either Coal or Biomass
  • 3.6. Pyrolysis is a Well Known High Temperature Process
  • 3.7. Electrolyte Route is Being Widely Used for Conventional Hydrogen Generation
  • 3.8. Electrolyte Routes Expected to Gain Prominence in Future
  • 3.9. Biological Routes are also Being Researched for Hydrogen Generation
  • 3.10. Microwave and Downhole Conversion Being Researched for Grey and Blue Hydrogen Generation
  • 3.11. Water Splitting and Photoelectrolysis are also of Research Interest
  • 3.12. Comparative Analysis of Reforming Technologies for Hydrogen Generation
  • 3.13. Comparative Analysis of Thermochemical Technologies for Hydrogen Generation
  • 3.14. Comparative Analysis of Electrolyte Routes for Hydrogen Generation
  • 3.15. Comparative Analysis of Biological and Renewable Routes for Hydrogen Generation
  • 3.16. Need of Effective Catalyst Technology Key for Developing High Performance Hydrogen Generation Processes

4.0. Innovation Indicators- Hydrogen Generation

  • 4.1. Electrolyte Route Technologies for Hydrogen Generation Within the Europe and Asia Pacific Region Gaining Traction
  • 4.2. Enhancing the Adoption of Non-renewable Energy in Hydrogen Production Through Catalyst Technology
  • 4.3. Enhancing the Adoption of Thermochemical Route in Hydrogen Production Within the Europe and Asia Pacific Regions is Also of Focus
  • 4.4. Future Innovations in Hydrogen Production from Biological Route Expected Especially in the European Region
  • 4.5. Research in Hydrogen Production from Biological Route Within the Asia Pacific and South America Regions
  • 4.6. Research Focused on Adoption of Renewable Energy for Hydrogen Production Within the North America and Europe Regions
  • 4.7. Research Focused on the Use of Renewable Energy in Hydrogen Production Through Hybrid Process
  • 4.8. Patent Activity on Hydrogen Generation Technology Increasing Steadily for the Past Three Years
  • 4.9. High Interest on Research Studies on Hydrogen Generation in China

5.0. Technology Assessment- Hydrogen Separation

  • 5.1. Hydrogen Separation Techniques are Essential to Remove Impurities
  • 5.2. Absorption is Considered as a Conventional Hydrogen Separation Technique
  • 5.3. Redox Reactions Occur as a High Temperature Separation Process
  • 5.4. Gas Membrane Separation is an Emerging Process
  • 5.5. Comparative Analysis of Absorption Process for Hydrogen Separation
  • 5.6. Comparative Analysis of Redox Reaction and Gas Membrane Separation as Hydrogen Separation Techniques

6.0. Innovation Indicators- Hydrogen Separation

  • 6.1. Efficiency of Redox Reactions is Enhanced Through Catalyst Technology
  • 6.2. High Commercialization Focus Towards Absorption Techniques in North America and Asia Pacific
  • 6.3. Optimizing the Hydrogen Separation Processes through Absorbent and Membrane Technologies are of Stakeholder Focus
  • 6.4. Research Focused Towards Gas Membrane Separation Expected to Increase
  • 6.5. Patent Activity on Hydrogen Separation Processes Gaining Traction
  • 6.6. High Interest on Research Studies for Hydrogen Separation in the Asia Pacific Region

7.0. Companies to Watch

  • 7.1. Addressing the Limitation of Grey and Blue Hydrogen Production Through Low Carbon Catalytic Technology
  • 7.2. Enhancing Feasibility of Adopting Green Hydrogen in the Automotive Industry Through Proton PEM Electrolyzer
  • 7.3. Developing Sustainable Alternative to Membrane Technology for Green Hydrogen Generation
  • 7.4. Enhancing the Feasibility of Generating Hydrogen from Seawater Through a High Performance and Cost-efficient Technology
  • 7.5. Developing High Performance and Cost-efficient Solar-to-hydrogen Technology Across the North America Region

8.0. Growth Opportunities

  • 8.1. Hydrogen Generation and Separation Technology Adoption Roadmap
  • 8.2. Growth Opportunities for Hydrogen Generation and Separation Process
  • 8.3. Strategic Imperatives: Critical Success Factors
  • 8.4. Growth Opportunities: Future Development of High Performance Hydrogen Generation and Separation Process

9.0. Key Contacts

  • 9.1. Industry Contacts
  • Legal Disclaimer