表紙:シェアードモビリティの成功見通しとマイカー保有台数への影響:2022年までの予測
市場調査レポート
商品コード
918947

シェアードモビリティの成功見通しとマイカー保有台数への影響:2022年までの予測

Expected Success of Shared Mobility and Implications on Vehicle Ownership, Forecast to 2022

出版日: | 発行: Frost & Sullivan | ページ情報: 英文 52 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=110.49円
シェアードモビリティの成功見通しとマイカー保有台数への影響:2022年までの予測
出版日: 2019年12月03日
発行: Frost & Sullivan
ページ情報: 英文 52 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

当レポートでは、北米諸国のマイカー保有台数の推定値・予測値や、MaaS (「サービスとしての」モビリティ) およびシェアードモビリティサービスの成功見通しについて分析するとともに、両社の関連性や共通する影響要因、業界関係者が今後取り組むべき課題、といった情報を取りまとめてお届けいたします。

エグゼクティブサマリー

  • 分析概略:マイカー保有台数の動向見通し
  • 分析概略:MaaS (Mobility as a Service) の普及見通し
  • 分析概略と将来展望
  • 分析範囲・目的
  • 市場促進要因:マイカー保有動向
  • 市場抑制要因:マイカー保有動向
  • マイカー保有台数の予測値
  • 将来のマイカー保有台数の変動予測
  • シェアードモビリティサービスの成功見通し
  • マイカー保有台数:シアトル・ダラス・デトロイトの場合
  • シェアードモビリティサービスの成功見通し:シアトル・ダラス・デトロイトの場合

成長機会と推奨行動 (C2A)

  • 自動車メーカー (OEM) とMaaSプロバイダー
  • MaaS市場の成長機会
  • 新規モビリティサービスの成長・成長のための戦略的課題

主な結論

  • 将来のマイカー保有台数の変動予測:概略
  • シェアードモビリティサービスの成功見通し:概略

付録

Frost & Sullivanについて

目次
Product Code: 9AB2/C3

Predicting Success of MaaS in North America

The Expected Success of Shared Mobility and Implications on Vehicle Ownership takes a holistic approach to determining the success of new shared mobility platforms in specific urban areas as well as the implications on personal vehicle ownership. First, the study analyzes key market drivers and restraints, interpreting factors such as declining vehicle sales, competition from new ridehailing entrants, and proliferation of shared mobility services. This in addition to statistics around urbanization, declining public transit 'ridership', and investment from major tech players and OEMs guides the analysis of key variables.

From these variables, such as total cost of vehicle ownership, access to public transportation, mobility service offerings, congestions/traffic patterns, and urban sprawl/city size, we create various scores for select geographies. The cost and convenience score, congestion score, mobility score, and public incentive score help to frame how the variables influence personal vehicle ownership. Applying these variables to the cities of Seattle, Dallas, and Detroit explains why consumers may or may not choose to relinquish a personal vehicle.

While the likelihood to own a personal vehicle strongly influences the success of shared mobility platforms, it is important to dig deeper to uncover other factors that may determine how new mobility services will fare in select geographies. With that in mind, we analyze variables such as population density, tech saturation, parking cost/availability, urban design, and access to public transportation to create scores for select geographies. This includes the entrance score, pedestrian friendliness score, accessibility score, and public incentive score to understand if mobility services are likely to thrive in the aforementioned cities.

Once scores have been calculated from both quantitative and qualitative information, analysis and interpretation of both the success of mobility services and likelihood of personal vehicle ownership specific geographies becomes understandable. By taking an average of all scores, it is possible to compare geographies on the same scale. As such, this study serves as a framework to interpret success of shared mobility services and likelihood of personal vehicle ownership across cities in the US.

This model grows as new information is gathered, demographics, services, regulation, initiatives and variables change. The flexibility provided by this study can help guide future analysis of the topics researched in various urban settings. New mobility and powertrain innovations are certain to change consumer ownership and transit habits. Urban infrastructure development will cause some cities to be more attractive for public transit ridership, personal vehicle ownership, and mobility service adoption. With this in mind, the weight assigned to various scores can be easily adapted with societal changes.

Table of Contents

Executive Summary

  • Key Findings-Personal Vehicle Ownership
  • Key Findings-Mobility-as-a-Service Adoption
  • Key Findings and Future Outlook
  • Research Scope and Objectives
  • Market Drivers-Vehicle Ownership
  • Vehicle Ownership Drivers Explained
  • Market Restraints-Vehicle Ownership
  • Vehicle Ownership Restraints Explained
  • Market Drivers-MaaS
  • MaaS Drivers Explained
  • Market Restraints-MaaS
  • MaaS Restraints Explained
  • Market Trends Discussion (2018-2022)
  • Predicting Vehicle Ownership
  • Predicting Vehicle Ownership (continued)
  • Criteria and Variables
  • Criteria and Variables (continued)
  • Likelihood to Forego Personal Vehicle Ownership
  • Predicting the Success of Shared Mobility Services
  • Predicting the Success of Shared Mobility Services (continued)
  • Criteria and Variables
  • Criteria and Variables (continued)
  • Predicted Success of Shared Mobility
  • Vehicle Ownership Profile-Seattle
  • Vehicle Ownership Profile-Dallas
  • Vehicle Ownership Profile-Detroit
  • Success of Shared Mobility Profile-Seattle
  • Success of Shared Mobility Profile-Dallas
  • Success of Shared Mobility Profile-Detroit

Growth Opportunities and Companies to Action

  • OEMs and MaaS Providers
  • MaaS Growth Opportunities
  • Strategic Imperatives for Success and Growth of New Mobility Services

Key Conclusions

  • Likelihood to Forego Vehicle Ownership Summary
  • Success of Shared Mobility Summary
  • Legal Disclaimer

Appendix

  • List of Exhibits

The Frost & Sullivan Story

  • The Frost & Sullivan Story
  • Value Proposition-Future of Your Company & Career
  • Global Perspective
  • Industry Convergence
  • 360º Research Perspective
  • Implementation Excellence
  • Our Blue Ocean Strategy