株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

北米・欧州の商用車テレマティクスにおける故障予測技術とその実装(2025年までの予測)

Prognostics and Its Implication in NA and EU Commercial Vehicle Telematics, Forecast to 2025

発行 Frost & Sullivan 商品コード 751641
出版日 ページ情報 英文 53 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=109.06円で換算しております。
Back to Top
北米・欧州の商用車テレマティクスにおける故障予測技術とその実装(2025年までの予測) Prognostics and Its Implication in NA and EU Commercial Vehicle Telematics, Forecast to 2025
出版日: 2018年11月16日 ページ情報: 英文 53 Pages
概要

北米・欧州の商用車テレマティクスにおける故障予測技術は2018年から2025年までの間に複合年間成長率130%で拡大すると予想されています。

当レポートは、北米・欧州の商用車テレマティクスにおける故障予測技術の収益構造やケーススタディ、市場の分析、企業への提言などについて取り上げています。

第1章 エグゼクティブサマリー

  • 主な調査結果
  • フリート管理者の故障予測技術調査のサマリー
  • 遠隔データと故障予測データの統合
  • 商用車産業における故障予測技術の重要性
  • 短期で故障予測システムを採用する場合の課題
  • 予測的であることへのパラダイムシフト

第2章 調査の範囲、定義、調査手法

第3章 故障予測技術と使用事例

  • 故障予測ソリューションのタイプ
  • 監視されるコンポーネントと潜在的エラー
  • コネクテッドトラック収益構造における故障予測ソリューションの進化
  • 事例―予測的メンテナンス
  • 事例―SOTAよFOTA
  • 事例―補償請求最適化

第4章 商用車の故障予測の収益構造

  • 商用車の故障予測技術のステークホルダー
  • 故障予測ソリューションプロバイダーの便宜マーキング
  • OEMビジネスモデルのキャンバス
  • ティア1サプライヤのビジネスモデルキャンバス
  • テレマティクスサービスプロバイダのビジネスモデルキャンバス
  • トラックOEM診断ソリューション
  • ティア1サプライヤ診断ソリューション
  • TSPおよびアナリティクス会社診断ソリューション

第5章 ケーススタディ

  • OEM―Navistarの予測的メンテナンス技術
  • ティア1サプライヤ―ZFの予測的メンテナンス技術
  • アナリティクス会社―Progressの予測的メンテナンス技術

第6章 市場の測定と市場分析

  • 故障予測技術の設置基盤予測
  • セグメントの貢献
  • 故障予測技術のパッケージングと価格戦略
  • 故障予測技術のサービス収益分析

第7章 成長機会と企業が取るべき行動

  • 成長機会―技術と提携
  • 戦略的必須事項

第8章 結論

  • 3大予測
  • 免責事項

第9章 付属資料

目次
Product Code: ME21-18

The Total Prognostics Market in NA and EU Put Together is Expected to Experience a Compound Annual Growth Rate (CAGR) of 130.5% from 2018 to 2025

The Internet of Things (IoT) and Industry 4.0 are mega-trends that are rapidly changing the global trucking industry, with North America and Europe being at the helm of it. From curtailing road safety issues to improving diagnostics capabilities of fleets, these trends are making trucking a more effective business. By applying diagnostic and prognostic techniques to vehicle data, companies can reveal how vehicles and their systems are currently performing (diagnostics) and how they will perform in the future - will they be able to produce when they need to be (prognostics). Prognostics and Health Management/Monitoring (PHM) are methods to assess the health condition and reliability of systems for the purpose of maximising operational reliability and safety. In the commercial vehicle segment, PHM systems are useful for predictive maintenance, product improvement, warranty claim optimization, Over-the-air (OTA) updates, dealer optimization and so on. The usage of PHM systems will have an impact on trucks OEMs, Tier-1 Suppliers and fleet operators in terms of reducing unnecessary expenses and improving efficiency. However, establishing significant benefits for all value chain participants remains a challenge, as not all value chain participants have established the monetary benefits of converting unstructured data to useful information. Apart from this, there are some common challenges that the industry as a whole is facing. Challenges such as shortage of budget, poor connectivity, low quality and quantity of data, and lack of dedicated sensors are pulling back the implementation of PHM system currently. With storage of data getting cheaper, bandwidth ever-increasing and the cost of sensors steadily coming down whilst their ability is increasing, doing things with vehicle data beyond basic analytics is becoming increasingly viable and adoption of PHM system is expected to grow in the future.

The prognostics market in NA and EU put together is expected to experience a compound annual growth rate (CAGR) of 130.5% between 2018 and 2025. The scope of PHM systems are currently restricted to tire, engine, transmission and emission. With electrification of trucks picking up pace, predictive maintenance, scheduling of battery recharge and replacement of batteries will drive the adoption of prognostics in the mid-term. The advent of autonomous trucks and platooning is expected to thrust the implementation of Artificial Intelligence and Machine Learning based prognostics in the long term.

Key Issues Addressed:

  • What are the challenges that the CV industry is facing in adopting prognostics solutions?
  • What are the effects of prognostics and use cases for stake holders such as OEMs, Tier 1 Suppliers and Telematics providers?
  • What is the current status of stakeholders' telematics based CV diagnostics solutions in North America and Europe?
  • By how much is the prognostics market expected to grow from 2018 to 2025?
  • What are the growth opportunities available for Prognostics solution developers in 2019 and what are the strategic imperatives to be taken?

Table of Contents

1. EXECUTIVE SUMMARY

  • Key Findings
  • Fleet Manager Prognostics Technology Survey Summary
  • Integration of Remote and Prognostics Data
  • Importance of Prognostics in CV Industry
  • Challenges in Deploying Prognostics Systems in the Short term
  • The Paradigm Shift Towards Being Predictive

2. RESEARCH SCOPE, DEFINITIONS, AND METHODOLOGY

  • Research Scope
  • Research Methodology
  • Key Questions this Study will Answer

3. PROGNOSTICS AND ITS USE CASES

  • Types of Prognostic Solutions
  • Components Monitored and Potential Failures
  • Maintenance Scheduling Strategies in CV Telematics
  • Evolution of Prognostic Solutions in Connected Trucks Ecosystem
  • Use Cases of Prognostics-Predictive Maintenance
  • Use Cases of Prognostics-SOTA and FOTA
  • Use Cases of Prognostics-Warranty Claim Optimization

4. COMMERCIAL VEHICLE PROGNOSTICS ECOSYSTEM

  • Commercial Vehicle Prognostics Stakeholders
  • Prognostics Solution Providers Benchmarking
  • OEM Business Model Canvas
  • Tier-1 Supplier Business Model Canvas
  • Telematics Service Providers Business Model Canvas
  • Select Truck OEMs Diagnostics Solutions
  • Select Tier-1 Suppliers Diagnostics Solutions
  • Select TSPs and Analytics Companies Diagnostics Solutions

5. CASE STUDIES

  • OEM-Navistar's Predictive Maintenance Technology
  • Tier 1 Supplier-ZF's Predictive Maintenance Technology
  • Analytics Company-Progress' Predictive Maintenance Technology

6. MARKET MEASUREMENT AND MARKET ANALYSIS

  • Prognostics Installed Base-Forecasting
  • Segment Wise Contribution
  • Prognostics Packaging and Pricing Strategy
  • Prognostics Service Revenue Analysis

7. GROWTH OPPORTUNITIES AND COMPANIES TO ACTION

  • Growth Opportunity-Technology and Partnerships
  • Strategic Imperatives

8. CONCLUSION

  • The Last Word-3 Big Predictions
  • Legal Disclaimer

9. APPENDIX

  • Abbreviations and Acronyms Used
  • Market Engineering Methodology
  • List of Exhibits
  • List of Exhibits (continued)
  • List of Exhibits (continued)
Back to Top