無料レポート プレゼントキャンペーン 実施中 : メールサービスに新規登録いただいた方にご用意した無料レポートをご提供

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

E-Waste (電気電子機器廃棄物)・バッテリーリサイクルにおける新興技術

Emerging Technologies in E-Waste and Battery Recycling

発行 Frost & Sullivan 商品コード 723007
出版日 ページ情報 英文 70 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=114.94円で換算しております。
Back to Top
E-Waste (電気電子機器廃棄物)・バッテリーリサイクルにおける新興技術 Emerging Technologies in E-Waste and Battery Recycling
出版日: 2018年09月27日 ページ情報: 英文 70 Pages
概要

当レポートでは、使用済みのバッテリーから貴金属の効果的な回収を可能にする、未来の整理科学的なプロセスについて調査し、E-Waste (電気電子機器廃棄物) およびバッテリーリサイクルの概要、新興技術、および成長機会などについてまとめています。

第1章 エグゼクティブサマリー

第2章 E-Wasteおよびバッテリーリサイクル:概要

  • E-Wasteは高価なマテリアルを含んでおり、回収 & リサイクルへ機会を提供
  • 重金属およびバッテリーからの毒性電解質の回収は環境・人間の健康への影響を減らす
  • 消費者セグメントはE-Waste生成の高いシェアに貢献
  • 非常に高価な構成物を必要とするE-Wasteリサイクル技術
  • 物理的な分離は資本が少なくて済むののの金属損失割合が高い、ほか

第3章 E-Waste・バッテリーリサイクルにおける新興技術

  • E-Wasteリサイクル技術の新興
  • 新興のバッテリーリサイクル技術
  • リチウムイオン電池リサイクル技術

第4章 鉛蓄電池リサイクル技術

  • 電解採取技術はリサイクルプロセスの数を削減し、運用コストを削減、ほか

第5章 ニッケル・水素蓄電池 (NIMH)

  • モンド法によるニッケルカルボニルの蒸留はニッケル以外の貴金属も回収、ほか

第6章 分析・提言

  • 中国の最近のE-Waste輸入禁止は世界のE-Waste貿易を破壊、ほか

第7章 成長機会

  • 成長機会1:ビジネスモデル - バッテリーリサイクル技術
  • 成長機会2:地域拡大 - バッテリーリサイクル技術

第8章 結論

第9章 主な契約

目次
Product Code: D80E

Innovative Technologies for the Recovery and Reuse of Heavy Metals and Rare Earth Elements from End-of-Life Electronics and Batteries

Electronic and battery waste should be considered as an important source for the recovery of crucial precious metals including Lead, Lithium, Nickel, Cadmium, Cobalt, and Copper. The recovery of rare earth metals from end-of-life electronics and batteries will reduce the burden on landfills and will also prevent leaching of hazardous compounds into the ground water which can reduce soil fertility and can also have serious implications on human health and the environment. Recovery of precious metals through conventional hydro and pyro metallurgical processes is a capital and time intensive process that results in lesser recovery rates. Recovery of precious metals by novel processes will also reduce the operational and maintenance costs and will also reduce emissions of greenhouse gases. The federal regulations of all countries should also consider stringent emission discharge permissible limits for hazardous gases in order to reduce the impact on the environment and human health.

The research study has identified the utilization of futuristic physiochemical processes that will enable the efficient recovery of precious metals from end-of-life batteries.

Table of Contents

1.0. EXECUTIVE SUMMARY

  • 1.1. Research Scope
  • 1.2. Research Process and Methodology
  • 1.3. Key Findings in Emerging E-Waste and Battery Recycling Technologies

2.0. E-WASTE AND BATTERY RECYCLING - AN OVERVIEW

  • 2.1. E-Waste Contains Valuable Materials that Offer Opportunities for Recovery and Recycling
  • 2.2. Recovery of Heavy Metals and Toxic Electrolytes from Batteries Results in Reduced Impact on the Environment and Human Health
  • 2.3. The Consumer Segment Contributes the Highest Share of E-waste Generated
  • 2.4. Highly Valuable Composition Necessitates E-Waste Recycling Technologies
  • 2.5. Physical Separation Requires Low Capital but Suffers from High Metal Loss Percentage
  • 2.6. Eco-friendly Metal Recycling Technologies are the Need of the Hour
  • 2.7. Level of Contamination Impacts the Market Value of Outputs from E-Waste and Battery Recycling Technologies
  • 2.8. Heavy Metals and Flame Retardants are the Most Polluting Materials in the E-Waste Stream
  • 2.9. The Presence of Valuable Resources in E-Waste Streams is the Key Driver for Recycling Technologies
  • 2.10. Drivers for E-Waste and Battery Recycling Technologies Explained
  • 2.11. Complexity in the Composition of E-Waste Streams is the Key Restraint for Recycling Technologies
  • 2.12. Restraints for E-Waste and Battery Recycling Explained

3.0. EMERGING TECHNOLOGIES IN E-WASTE AND BATTERY RECYCLING

  • 3.1. EMERGING E-WASTE RECYCLING TECHNOLOGIES
    • 3.1.1. Novel Technologies Predominantly Focus on Improved Environmental Performance
    • 3.1.2. Corona Electrostatic Separation is a Zero Polluting Separation Technology for e-Waste Recycling with Negligible Contamination
    • 3.1.3. The Use of Organic Acids for Leaching of Metals from E-waste Makes Bioleaching Attractive
    • 3.1.4. Chemolithoautotrophic Bacteria (Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans) have been Widely used for Bioleaching
    • 3.1.5. Chelation Chemistry Offers Promising Potential for Metal Extraction from E-waste
    • 3.1.6. Ionic Liquids Enable Efficient Rare Earth Metals Extraction from E-Waste
    • 3.1.7. Supercritical Fluid Treatment Offers Superior E-Waste Recycling Rates
    • 3.1.8. Vacuum Metallurgy Has the Potential to Recover Metal Nanoparticles
    • 3.1.9. Advancements in Improving the Metal Extraction Rate are Required
    • 3.1.10. Extraction of Rare Earth Metals is the Key Focus Area for Innovators
    • 3.1.11. Recyclers Offer Additional Services to Ensure Data Security of E-Waste from the ICT Sector
  • 3.2. EMERGING BATTERY RECYCLING TECHNOLOGIES
    • 3.2.1. Novel Battery Recycling Technologies Will Be Required to Replace Conventional Processes
  • 3.3. LITHIUM ION BATTERY RECYCLING TECHNOLOGIES
    • 3.3.1. Conventional Technologies Used in Lithium-Ion Battery Recovery
    • 3.3.2. Processes Based on Vacuum Thermal Recycling Consume Less Energy Compared to Conventional Processes
    • 3.3.3. Patented Closed Loop Process Uses Leachants to Recover Lithium from end-of-Life Batteries
    • 3.3.4. Integration of Mechanical and Chemical Processes for Battery Recycling Enhances the Recovery Rate of Lithium Ions
    • 3.3.5. Promoting Lithium Ion Battery Recycling also Aids in Recovery of other Precious Metals
    • 3.3.6. Proprietary Processes Implemented by Various Companies for Lithium Ion Battery Recycling Reduces the E-waste Burden on Landfills

4.0. LEAD ACID BATTERY RECYCLING TECHNOLOGIES

  • 4.1. Electrowinning Technique Reduces the Number of Recycling Processes and thus Reduces Operational Expenditure
  • 4.2. Leaching Processes Make Recovery of Lead a More Self-Sustained Process
  • 4.3. Iono-Metallurgical Processes have High Recovery Rates as Compared to Traditional Processes
  • 4.4. Novel Processes Help in Adhering to Zero Liquid Discharge Norms and also Recovering Precious Metals

5.0. NICKEL METAL HYDRIDE (NIMH) BATTERY RECYCLING TECHNOLOGIES

  • 5.1. Distillation of Nickel Carbonyl from Mond Process also Recovers other Precious Metals Apart from Nickel
  • 5.2. Non Toxic Super Critical Fluids Enhance Recovery of Nickel and other Metals from Spent Batteries
  • 5.3. Bio-Metallurgical Processes Enhance Recovery Rates of Ni from Nickel-Cadmium Batteries
  • 5.4. Companies Involved in Managing Rare Earth Metals are also Involved in Recovering Nickel from End-of-Life Batteries

6.0. ANALYSIS AND RECOMMENDATIONS

  • 6.1. China's Recent Ban on E-Waste Imports has Disrupted the Global E-Waste Trade
  • 6.2. Stringent Regulations and Support Programs Are Key for Formal E-waste Recycling
  • 6.3. E-Waste Recycling Promotes Sustainability Development Goals
  • 6.4. Metal Recovery Using E-Waste Recycling Technologies Results in Reduced GHG Emissions
  • 6.5. Shorter Lifespan of Mobile Phones Necessitates the Need for E-Waste Recycling
  • 6.6. Comparative Analysis for the Emerging Battery Recycling Technologies

7.0. GROWTH OPPORTUNITIES

  • 7.1. Growth Opportunity 1- Business Models - Battery Recycling Technologies
  • 7.2. Growth Opportunity 2- Geographic Expansion - Battery Recycling Technologies

8.0. CONCLUSION

  • 8.1. Key Conclusions
  • 8.1. Key Conclusions

9.0. KEY CONTACTS

  • 9.1. Key Contacts
  • Legal Disclaimer
Back to Top