特集 : 国別レポートが13,000件から検索可能になりました!

特集 : 海外市場の委託調査がセミカスタムベースでお手軽にできます

株式会社グローバルインフォメーション
表紙
市場調査レポート
商品コード
689267

医用画像分析向け人工知能 (AI):行動喚起 (CTA) 2018年

Artificial Intelligence for Medical Image Analysis - Companies-to-Action, 2018

出版日: | 発行: Frost & Sullivan | ページ情報: 英文 119 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=106.56円
医用画像分析向け人工知能 (AI):行動喚起 (CTA) 2018年
出版日: 2018年08月21日
発行: Frost & Sullivan
ページ情報: 英文 119 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

当レポートでは、医用画像分析向け人工知能 (AI) 市場で活動する企業に注目して分析し、医用画像分析向けAI型ソリューションの開発・市販化を試みる企業、ベンダーが注力するモダリティ・臓器・疾病領域、競合・提携の動き、革新的企業による独自のアプローチ・利用例などについて調査しています。

第1章 エグゼクティブサマリー

第2章 行動喚起 (CTA) :概要

第3章 医用画像分析における人工知能 (AI) :市場概要

  • 医用画像におけるAIの利用例
  • 調査イントロダクション
  • 画像チェーンにわたるAI型分析のアプリケーション
  • 医用画像向けAI技術のハイプサイクル
  • AI型画像分析の多様な利用状況
  • 医用画像向けAIの価値命題:主要ステークホルダー

第4章 医用画像分析における人工知能 (AI) :エコシステム・競合情勢

  • 医用画像向けAI:競合情勢
  • 医用画像向けAIエコシステムにおけるダイナミクスの発展
  • 医用画像向けAIの新興企業の設立タイムライン
  • 新興企業の数は一貫して増加
  • 医用画像向けAI開発における主なマイルストーン
  • 重要な規制承認のマイルストーン
  • 継続学習、次の規制のフロンティア
  • デジタルパソロジーAI
  • AI型内視鏡画像分析、急成長の分野

第5章 医用画像分析における人工知能 (AI) :地域パターン

  • 各国の様々なAI向けインセンティブ・ビジョン
  • 世界における医用画像向けAIソリューションの展開
  • 医用画像向けAI企業の世界的な広がり
  • 地域分析:上位2ヶ国、ほか

第6章 医用画像分析における人工知能 (AI) :新興企業の資金動向

  • 世界の資金源
  • 世界の資金源についての議論
  • 世界の投資ターゲット
  • 世界の投資ターゲットについての議論

第7章 医用画像分析における人工知能 (AI) :環境評価

  • 主な臨床用途領域
  • 主な臨床用途領域についての議論
  • ターゲットとなる疾病分野
  • ターゲットとなる臓器
  • 疾病・臓器へのフォーカスについての議論
  • 画像モダリティへのフォーカス
  • 画像モダリティへのフォーカスについての議論、ほか

第8章 行動喚起 (CTA)

  • 画像向けAIの開発:主要画像ベンダー別
  • 画像機器OEMの上位4社:AIへの注力度別
  • 医用画像分析におけるIBM Watson Health
  • Aidoc
  • Arterys
  • Brainomix
  • Enlitic
  • EnvoyAI
  • Huiying Medical Tech Co.
  • IDx
  • Imagen Technologies
  • MaxQ-AI (formerly MedyMatch Technology)
  • Quantitative Insights
  • Riverain Tech
  • Viz.AI
  • Vuno

第9章 成長機会

第10章 展望:AI型医用画像分析の10大予測

第11章 付録

第12章 FROST & SULLIVAN について

目次
Product Code: K27C-50

Lay of the Land, Growth Opportunities and Future Direction

Medical imaging has become the bellwether application for artificial intelligence (AI) technologies in healthcare. From deep learning and machine learning approaches, to cognitive computing, to even natural language processing, several AI approaches are now being incorporated in the field of radiology. Apart from academic research groups, almost all major manufacturers and vendors in the medical imaging space have or are developing initiatives to bring automation, augmentation or acceleration to medical imaging, cognitive computing for imaging informatics applications and even intelligent machines. There are several startups as well which continue to advance the development of solutions.

In the medical imaging workflow, from ordering of imaging studies all the way up to follow-up post imaging, artificial intelligence could play a role. Of course, current efforts are mostly concentrated in analyzing the medical images. These solutions have been deployed on premises, but there is a gradual adoption of cloud technologies too. As applications evolve and are developed further, AI is moving to the edge, and might also become embedded in imaging equipment as the next frontier. However, at the global level, countries look up to AI to address very different and systemic challenges - while some such as the United States require higher productivity and standardization, the United Kingdom needs to address shortages and higher wait time, whereas others such as China need it to build access and expertize to improve diagnosis rates. This has naturally resulted in a continuous growth in the number of startups emerging in this field, globally. Funding too, has flowed in to support the momentum. Crucial regulatory milestones have been achieved, but many more are likely to be reached as well.

This study is a focused analysis to highlight all of the companies active in this space, and to analyze their solutions to get a sense of the trends in the industry. Aptly called the Companies-to-Action, a comprehensive analysis of ~100 AI companies currently offering medical image analysis solutions provides an in-depth insight in to several key questions, as outlined below. Competitive landscape, evolving partnerships, regional analysis to identify conducive factors for development of AI solutions, funding trends for the 80+ startups, a landscape assessment, and finally, a list of top ten predictions for the coming 5 years are covered in this study. It also highlights a curated list of companies along with our perspective on their uniqueness, potential opportunities, and threats.

Key Issues Addressed:

  • Who are the companies that have set out to develop and commercialize artificial intelligence-based solutions for medical image analysis?
  • Which modalities, organs and disease areas have vendors focused on during the inception phase 2011-2018?
  • What kind of competitive and partnership dynamics are taking place across the vendor, provider and investor ecosystems?
  • What are some unique approaches and use cases addressed by some of the most innovative companies vested in AI-based medical image analysis?
  • How do various regions fare in the adoption of, and investment in AI based technologies for medical image analysis?

Table of Contents

1. EXECUTIVE SUMMARY

  • Key Findings
  • Key Findings (continued)
  • Key Findings (continued)
  • Scope and Segmentation
  • Key Questions this Study will Answer

2. COMPANIES-TO-ACTION OVERVIEW

  • Companies-To-Action (C2A) Value Creators
  • Threats & Opportunities
  • Study Methodology

3. ARTIFICIAL INTELLIGENCE IN MEDICAL IMAGE ANALYSISMARKET OVERVIEW

  • Medical Imaging AI Use Cases
  • Study Introduction
  • Application of AI-Based Analysis Across the Imaging Chain
  • Application of AI-Based Analysis Across the Imaging Chain (continued)
  • Medical Imaging AI Technology Hype Cycle
  • Diverse Usage Scenarios for AI-Based Image Analysis
  • Diverse Usage Scenarios for AI-Based Imaging Analytics
  • Medical Imaging AI Value Propositions to Key Stakeholders
  • Medical Imaging AI Value Propositions to Key Stakeholders (continued)

4. ARTIFICIAL INTELLIGENCE FOR MEDICAL IMAGE ANALYSIS ECOSYSTEM & COMPETITIVE LANDSCAPE

  • Medical Imaging AI Competitive Landscape
  • Developing Dynamics in the Medical Imaging AI Ecosystem
  • Developing Dynamics in the Medical Imaging AI Ecosystem (continued)
  • Timeline of Founding of Medical Imaging AI Start-ups
  • Consistent Growth in Start-up Numbers During 2009-2017
  • Timeline of Industry-Firsts For Medical Imaging AI Start-ups
  • Select Milestones in Medical Imaging AI Development
  • Select Significant Regulatory Approval Milestones
  • Continuous Learning, the Next Regulatory Frontier
  • Digital Pathology AI, a Tangential Area to Medical Imaging AI
  • AI-Based Endoscopy Image Analysis a Burgeoning Field

5. GEOGRAPHICAL PATTERNS FOR ARTIFICIAL INTELLIGENCE IN MEDICAL IMAGE ANALYSIS

  • Different Incentives and Vision for AI Across Countries
  • Global Deployments of Medical Imaging AI Solutions
  • Global Spread of Medical Imaging AI Companies
  • Regional Analysis-Top Two Countries
  • Regional Analysis-Top Two Countries (continued)
  • Regional Analysis-Next Two Countries
  • Regional Analysis-Next Three Countries
  • Regional Analysis-Emerging Hotbeds

6. FUNDING TRENDS FOR ARTIFICIAL INTELLIGENCE IN MEDICAL IMAGE START-UPS

  • Global Funding Sources for Medical Image Analysis AI
  • Global Funding Sources for Medical Image Analysis AI-Discussion
  • Global Targets for Medical Image Analysis AI Investments
  • Global Targets for Medical Image Analysis AI Investments-Discussion

7. ARTIFICIAL INTELLIGENCE IN MEDICAL IMAGE ANALYSISLANDSCAPE ASSESSMENT

  • Top Clinical Application Areas
  • Top Clinical Application Areas-Discussion
  • Target Disease Areas
  • Target Organs
  • Disease and Organ Focus-Discussion
  • Imaging Modality Focus
  • Imaging Modality Focus-Discussion
  • Overlaps in Imaging Modality Focus
  • Overlaps in Imaging Modality Focus-Insights

8. COMPANIES-TO-ACTION

  • Imaging AI Developments by Major Imaging Vendors
  • Top 4 Imaging Equipment OEMs by Intensity of AI Efforts
  • IBM Watson Health in Medical Image Analysis
  • Aidoc
  • Aidoc (continued)
  • Arterys
  • Arterys (continued)
  • Brainomix
  • Brainomix (continued)
  • Enlitic
  • Enlitic (continued)
  • EnvoyAI
  • EnvoyAI (continued)
  • Huiying Medical Tech Co.
  • Huiying Medical Tech Co. (continued)
  • IDx
  • IDx (continued)
  • Imagen Technologies
  • Imagen Technologies (continued)
  • MaxQ-AI (formerly MedyMatch Technology)
  • MaxQ-AI (formerly MedyMatch Technology) (continued)
  • Quantitative Insights
  • Quantitative Insights (continued)
  • Riverain Tech
  • Riverain Tech (continued)
  • Viz.AI
  • Viz.AI (continued)
  • Vuno
  • Vuno (continued)

9. GROWTH OPPORTUNITIES

  • 5 Major Growth Opportunities
  • Strategic Imperatives for AI Medical Image Analysis Solutions

10. OUTLOOK-TOP TEN PREDICTIONS FOR AI-BASED MEDICAL IMAGE ANALYSIS

  • Top 10 Predictions for 2018-2022
  • Top 10 Predictions for 2018-2022(continued)
  • Legal Disclaimer

11. APPENDIX

  • Imaging Modality Focus for Medical Imaging AI Companies
  • Which Modalities have been Tackled by Imaging AI Vendors?
  • Coverage of Companies
  • Universe of Medical Image Analysis AI Companies
  • Universe of Imaging Modality Companies
  • Universe of Clinical Specialty Focus Companies
  • Universe of Disease Focus Companies
  • List of Exhibits
  • List of Exhibits (continued)
  • List of Exhibits (continued)

12. THE FROST & SULLIVAN STORY

  • The Frost & Sullivan Story
  • Value Proposition-Future of Your Company & Career
  • Global Perspective
  • Industry Convergence
  • 360° Research Perspective
  • Implementation Excellence
  • Our Blue Ocean Strategy
株式会社グローバルインフォメーション
© Copyright 1996-2020, Global Information, Inc. All rights reserved.