メールサービス キャンペーン : 期間中に新規登録や配信希望カテゴリの変更等をされた方に、ご用意した無料レポートを提供しております。 新規登録 / 登録内容変更

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

材料技術が電気自動車 (EV) の将来を形成

Material Technologies Shaping the Future of Electric Vehicles

発行 Frost & Sullivan 商品コード 643480
出版日 ページ情報 英文 88 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=111.89円で換算しております。
Back to Top
材料技術が電気自動車 (EV) の将来を形成 Material Technologies Shaping the Future of Electric Vehicles
出版日: 2018年05月07日 ページ情報: 英文 88 Pages
概要

当レポートでは、電気自動車 (EV) 導入の現状について調査分析し、世界/地域別の普及のほか、軽量設計とバッテリー性能に焦点を当てて、体系的な情報を提供しています。

第1章 エグゼクティブサマリー

第2章 電気自動車 (EV) :概要

  • EV:進化のフェーズ
  • フェーズ1
  • フェーズ2
  • フェーズ3
  • EV区分:駆動系別
  • 主なEV機能
  • 主な技術パラメーター

第3章 電気自動車 (EV) :シナリオ

  • 中国が導入で主導
  • 中国がマイクロカー販売で優勢
  • EV導入の影響要因のフレームワーク
  • EVの大規模な導入において材料が重要な役割を果たす

第4章 電気自動車 (EV) 用軽量材料

  • 持続可能、低炭素モビリティシナリオへの移行
  • EVのコンポーネント数は少ない
  • EVのパワートレインは2倍以上かさばる
  • 材料の交換と小型化が鍵
  • 直接/間接軽量化
  • 米国エネルギー省 (DOE) と自動車技術局 (VTO) の活動、など

第5章 電気自動車 (EV) 用軽量材料のイノベーション

  • ホットスタンプ材
  • レアアースフリーのマグネシウム合金

第6章 電気自動車 (EV) 用バッテリー技術

  • バッテリー化学物質
  • 陰極材料
  • 減量化と容量保持の向上
  • リチウムイオン電池の化学物質
  • NMC導入が急増
  • 先進のバッテリー技術
  • 金属空気電池
  • ソリッドステートポリマー電池

第7章 電気自動車 (EV) 用バッテリー材料のイノベーション

  • 先進のリチウムイオン技術
  • ソリッドステート電池の技術開発

第8章 知的財産 (IP) 情勢

  • 軽量材料に関する特許出願の着実な増加
  • Li2MSiO4・LiMBO3構成が注目
  • ソリッドステート電池・リチウム空気電池

第9章 Analyst's Deskより

第10章 主要特許

第11章 主要連絡先

目次
Product Code: D82B

Material Development Aimed at Design Simplification, Lightweighting and Ensuring Driver Safety While Battery Development is Focused on Improving Energy Density, Lifetime,and Recyclability

According to the United States Environment Protection Agency, ~26% of global green house gas emissions are from the transportation sector, which includes emissions from cars, trucks, ships, trains, and airplanes. Apparently, passengers cars and light-duty trucks or light commercial vehicles (LCVs) are the largest source of transportation-related emissions and account for ~15- 20% of total greenhouse emissions.

With the Paris Climate Agreement creating a sense of competitive spirit among countries to annually push their carbon dioxide (CO2) emission targets, the automotive industry has been caught up in the hustle to be the catalyst that will drive governments to achieve emission targets. As a consequence, automotive OEMs and car manufacturers are on a quest to become less accountable for climate change and to increase brand equity by becoming evangelists for a sustainable carbon-free world. The automotive industry has concentrated its efforts to make alternative powertrain technologies economical and practically competent with internal combustion engines. Even as big brands invest huge money on alternative powertrains such as full battery electric, hybrids, hydrogen fuel cell electric and plug-in hybrids, one key factor that impacts the efficiency of all these power trains is lightweighting. For every part or component that goes into a vehicle, there is a prospect to reduce weight by replacing traditionally used materials with new lightweight alternatives.

This research service titled “Material Technologies Shaping the Future of Electric Vehicles,” discusses the current state of electric vehicle (EV) adoption by giving a snapshot of the global and regional penetration in 2017. A three-dimensional view is outlined to identify the factors that will influence the future growth in adoption of electric vehicles. In specific, the technology influencers are divided into two namely lightweight design and battery performance.

From a material science perspective, key areas where materials can contribute to uptake of EVs are identified:

Materials for direct lightweighting

Materials re-defining battery performance contributing to indirect lightweighting

A list of key innovators and inventions that could transform the EV landscape is provided along with patent filing trends to give a perspective of solutions and opportunities that are evolving in the automotive industry.

Table of Contents

1.0 Executive Summary

  • 1.1 Research Scope
  • 1.2 Research Methodology
  • 1.3 MDDF Strategy In Play To Make Mobility Greener And Safer
  • 1.4 Positioning Materials as an Influential Lever for EV Growth
  • 1.5 Materials Enable Development of Cleaner, Leaner, and Powerful EVs

2.0 Electric Vehicles - An Introduction

  • 2.1 Electric Vehicles - Phases of Evolution
  • 2.2 Phase 1: Power, Speed, and Driving Comfort of ICEs Dominate
  • 2.3 Phase 2: CAA and Oil Embargo Infuses Fresh EV Aspirations
  • 2.4 Phase 3: Tesla Triggers Growth While China Opens a New Chapter
  • 2.5 Electric Vehicles Segmentation - by Drivetrain Type
  • 2.6 Key Electric Vehicle Features to Assess Competitiveness
  • 2.7 Key Technical Parameters to Assess Battery Performance

3.0 Electric Vehicles - 2017 Scenario

  • 3.1 China Leads the Way in Adoption Even as Sales Hit New Record
  • 3.2 China Dominate Microcar Sales While Tesla Remains Top Brand
  • 3.3 Framework of Influencers for EV Adoption
  • 3.4 Materials Play an Important Role in Widescale Adoption Of EV

4.0 Lightweight Materials for Electric Vehicles

  • 4.1 Moving Toward a Sustainable, Low Carbon Mobility Scenario
  • 4.2 EVs have Lesser Components Than ICE Powered Vehicles
  • 4.3 EV Powertrain More Than Twice Bulkier Than in ICE powered vehicles
  • 4.4 Material Replacement and Downsizing are Key for Lightweighting
  • 4.5 Identifying the Nexus of Direct and Indirect Lightweighting is Important for OEMs
  • 4.6 US DOE and VTO Actively Pursuing EV performance goals
  • 4.7 Lightweighting can eet Range Targets
  • 4.8 HSS and Aluminum Alloys Grabbing the Share of Regular Steel
  • 4.9 Magnesium Alloys, CFRP, and AHSS are key Materials with High Lightweighting Potential
  • 4.10 Aluminum: An Expensive Metal with trength of Steel
  • 4.11 Full Aluminum Body EV Can M
  • 4.12 Magnesium: Lightest Structural Metal with Potential Challenges Related to Creep Behavior
  • 4.13 Choice of Alloying Elements Key to Overcome Barriers
  • 4.14 MRI 230D and AS41 Exhibit Superior High Temperature Stability
  • 4.15 Developments in Magnesium Alloys Aim to Improve its rocessability and Heat tability
  • 4.16 OEMs Highlight the Potential Use of Magnesium Alloys in Body and Chassis Parts
  • 4.17 Steel - A Rapidly Evolving Metal with High Lightweighting Potential
  • 4.18 1st Generation Offered Strength at the Cost of Low longation
  • 4.19 2nd Generation Steels Characterized by Improved Ductility and Joining Challenges
  • 4.20 Generation AHSS can Meet the Future eeds of Automotive Safety
  • 4.21 Full Steel Vehicle Designs Showcase Potential of AHSS in EVs
  • 4.22 AHSS Energy Efficient than Alternatives in Production Phase
  • 4.23 Polymer Composites - A Versatile Alternative to Traditional Metals
  • 4.24 Composite Manufacturers and OEMs Partner to Identify
  • 4.25 iGC Auto Project Targets 50% eight Reduction Using Graphene
  • 4.26 CFRP Composite ody odules ecoming an EV Norm
  • 4.27 Significant Growth in Composite Development Partnerships

5.0 Innovations in Lightweight Materials for Electric Vehicles

  • 5.1 Hot Stamped Steel gets Growing while Sustainability Catches Up
  • 5.2 Zero Rare Earth Mg-Alloys Possible Through Efficient Processes

6.0 Battery Technologies for Electric Vehicles

  • 6.1 Battery Chemistries Evolve to Improve Energy Density
  • 6.2 Cathode Materials Critical to Improve Energy Density
  • 6.3 Focus on Weight Reduction and Improving Capacity Retention
  • 6.4 Specifications of Different Lithium-ion Battery Chemistries
  • 6.5 Rapid Rise in NMC Adoption
  • 6.6 Advanced Battery Technologies to Range Anxiety
  • 6.7 Research Focus Areas in Metal Air Batteries
  • 6.8 Research Focus Areas in Solid State Polymer Batteries

7.0 Innovations in Battery Materials for Electric Vehicles

  • 7.1 Advanced Li-ion Technologies Improve Electrode Performance
  • 7.2 High Impact Technology Developments for Solid State Batteries

8.0 Intellectual Property Landscape(2015 - 2017)

  • 8.1 Steady Increase in Patent Filings Related to Lightweight Materials in the last 3 Years
  • 8.2 Li2MSiO4 and LiMBO3 Configurations are Widely Featured in IP Filings
  • 8.3 SSBs and Li-air in Growth Phase of R&D along with NMC and NCA

9.0 From the Analyst's Desk

  • 9.1 Incentive Dependent Growth Not Enough to Go Mainstream
  • 9.2 Advanced Materials Will Enable Sustainable Growth in Adoption of EVs

10.0 Key Patents

  • 10.1 Key Patents Related to Lightweight Materials for Electric Vehicles
  • 10.2 Key Patents Related to Lightweight Materials for Electric Vehicles
  • 10.3 Key Patents Related to Lithium Cobalt Oxide (LCO) Batteries
  • 10.4 Key Patents Related to Lithium Manganese Oxide (LMO) Batteries
  • 10.5 Key Patents Related to Lithium Nickel Manganese Cobalt Oxide (NMC) Batteries
  • 10.6 Key Patents Related to Lithium Iron Phosphate (LFP) Batteries
  • 10.7 Key Patents Related to Lithium Nickel Cobalt Aluminum Oxide (LCA) Batteries
  • 10.8 Key Patents Related to Lithium Titanate ( LTO) Batteries
  • 10.9 Key Patents Related to Solid State Batteries (SSB)
  • 10.10 Key Patents Related to Solid State Batteries (SSB)

11.0 Key Contacts

  • 11.1 Key Contacts
  • Legal Disclaimer
Back to Top