無料レポート プレゼントキャンペーン 実施中 : メールサービスに新規登録いただいた方にご用意した無料レポートをご提供

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

航空宇宙・自動車部門向け高性能ポリマー

High Performance Polymers in the Aerospace and Automotive Sectors

発行 Frost & Sullivan 商品コード 637908
出版日 ページ情報 英文 93 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=114.61円で換算しております。
Back to Top
航空宇宙・自動車部門向け高性能ポリマー High Performance Polymers in the Aerospace and Automotive Sectors
出版日: 2018年04月25日 ページ情報: 英文 93 Pages
概要

当レポートでは、航空宇宙・自動車部門向け高性能ポリマーについて調査分析し、概要、技術ベンチマーキング、主要特性、主要イノベーターと技術革新、IP情勢分析、主な特許など、体系的な情報を提供しています。

第1章 エグゼクティブサマリー

第2章 高性能ポリマー (HPP) :概要

  • HPPは高強度と耐久特性を有するポリマーの進化クラス
  • 分子形態が高温性能を決定
  • 製品開発は応用ニーズに合わせて
  • 2つの指標:軽量強度と摩耗・摩擦性能
  • 軽量強度マトリクス
  • 耐久性がHPPの重要選択
  • 摩耗・摩擦性能の依存性
  • PSU・PESUは最高の摩耗・摩擦性能指数

第3章 高性能ポリマー (HPP) の技術ベンチマーキング

  • 耐火軽量材料
  • 機械的特性は強度と寸法安定性
  • 摩耗・摩擦性能と成形性
  • 温度・粘度に相関する加工性
  • 摩耗性能と成形性を定義する基準
  • 性能指標の比較スケール
  • PEEK
  • PEI
  • PAI
  • PSU
  • PESU
  • PPSU
  • PPS
  • PPA
  • PFA
  • PARA
  • PI

第4章 自動車産業向け高性能ポリマー (HPP)

  • 持続可能な低炭素モビリティシナリオへ移行
  • 実質利益がOEMを促進
  • 使用事例のリスト
  • 熱管理システム
  • 燃料システム
  • パワートレイン
  • 電気・電子製品、など

第5章 航空宇宙産業向け高性能ポリマー (HPP)

  • 新しい設計基準を満たす材料加工
  • 最終用途の特定
  • キャビン内装
  • エアロ構造
  • システム・サポート
  • 推進力

第6章 高性能ポリマーの主要イノベーターと技術革新

  • バイオ再生可能なPEEKと3D印刷可能なPEEKグレード
  • 3D印刷の航空機ウィンドブレード:PEEKによる可能性
  • 複合材料の開発
  • PEI複合材料
  • PAIの摩耗・摩擦グレード
  • PAIとPPAの新しいバリエーション
  • 改質PI

第7章 知財 (IP) 情勢分析

  • 特許出願動向
  • BASFに続き、SABICが優勢
  • 自動車部門では、FordやGMなどのOEMが最前線に
  • 航空宇宙部門では、AirbusとBoeingが先駆者

第8章 主な特許

  • 航空宇宙部門向け新プロセス関連の特許
  • PPS関連の主な特許
  • PEEK関連の主な特許
  • PI関連の主な特許
  • PEI関連の主な特許
  • PAI関連の主な特許
  • PPSU関連の主な特許
  • PESU関連の主な特許
  • PSU関連の主な特許
  • PPA関連の主な特許
  • PFA関連の主な特許
  • LCP関連の主な特許
  • PARA関連の主な特許

第9章 主な連絡先

目次
Product Code: D830

Light-weighting and fuel efficiency targets drive the need for OEMs to explore new venues for replacing metals and thermosets

Considering the global trends in automotive and aerospace focusing on improving fuel efficiency and reducing carbon footprint, these polymers can offer new possibilities in performance by replacing metals. However, it is a challenge to make the right choice of polymer grade for a specific end-use application due to the complexities involved in material selection, design and processing so as to achieve equivalent or better performance as metals at a competitive price.

This research service titled “High Performance Polymers for Automotive and Aerospace Industries (TechVision)” discusses the Top 12 High Performance Polymers that are considered as an alternative to metals in automotive and aerospace industries. We present a benchmarking analysis of these polymers based on factors that affect their attractiveness in end-use industries. Factors such as functional capabilities, strength, durability, processability and price are evaluated for each polymer.

Polymers evaluated include: PEEK, PI, PAI, PEI, PFA, PSU, PESU, PPSU, PVDF, PPA, PPS and LCP.

Key properties of each polymer that act as indicators for performance factors are identified and presented in detail. Assessment of needs from different application segments in both automotive and aerospace industries is carried out to identify gaps.

A listing of key innovations, stakeholder initiatives and patent filing trends from both automotive and aerospace industries is included to give an indication of the road ahead and companies to watch in the next 2-3 years.

Table of Contents

1.0. EXECUTIVE SUMMARY

  • 1.1. Research Scope
  • 1.2. Research Methodology
  • 1.3. MDDF Strategy Focused on Making Mobility Greener and Safer
  • 1.4. TWO Indices at the core of FOUR facets that define performance
  • 1.5. Cost-to-performance a Key Deciding Factor For Material Choice

2.0. HIGH PERFORMANCE POLYMERS - AN OVERVIEW

  • 2.1. HPP Considered as an Evolving Class of Polymers With High Strength and Endurance Characteristics
  • 2.2. Molecular Morphology Dictates High Temperature Performance
  • 2.3. Product Development Focus is Aligned With Application Needs
  • 2.4. TWO Indices: Lightweight Strength and Wear-friction Performance That Govern Adoption
  • 2.5. Lightweight Strength Matrix Groups High Performance Polymers Into 3. Material Classes
  • 2.6. Frost & Sullivan Analysis Showcases that Endurance is a Key Choice for Selection of HPP
  • 2.7. Frost & Sullivan Analysis Exhibits the Wear-friction Performance Dependencies
  • 2.8. PSU & PESU the Highest Wear-friction Performance Index

3.0. TECHNOLOGY BENCHMARKING OF HIGH PERFORMANCE POLYMERS

  • 3.1. Fire Resistant Lightweight Materials Require Thermal Stability
  • 3.2. Mechanical Properties Defining Strength and Dimensional Stability
  • 3.3. Criteria that Define Wear-friction Performance and Moldability
  • 3.4. Processability Related to Temperature-viscosity Correlation
  • 3.5. Scales to Compare Performance Indicators of High Performance Polymers
  • 3.5. Rating Scales to Compare Performance Indicators of High Performance Polymers (continued)
  • 3.6. PEEK: Versatile Polymer For High Strength, Low Tolerance Parts
  • 3.7. PEI: Stiff and Strong Polymer for High Impact Applications
  • 3.8. PAI: Rated High on Strength and Stability, and Ease of Processing
  • 3.9. PSU: FST Compliant, Fuel Friendly, Wear Resistant Polymer
  • 3.10. PESU: Excellent Wear Resistance and Dimensional Stability
  • 3.11. PPSU: Superior Thermal Stability With High Melt Viscosity
  • 3.12. : Strong High Flow Grades Enable Molding of Precision Parts
  • 3.13. PPS: Material of Choice For Complex Parts With Tight Tolerance
  • 3.14. PPA: High Strength-to-weight Ratio and Good Dimensional Stability
  • 3.15. PFA: A Smoother, Lighter, And Stronger Version of PTFE
  • 3.16. PARA: Smooth, Stiff, and Dimensionally Stable Alternative to PA 6/6
  • 3.17. PI: An Expensive Star Performer For Stiff Tight Tolerance Parts

4.0. HIGH PERFORMANCE POLYMERS IN THE AUTOMOTIVE INDUSTRY

  • 4.1. Moving Toward a Sustainable, Low Carbon Mobility Scenario
  • 4.2. Realized Benefits Encouraging OEMs to Look Beyond Barriers
  • 4.3. A Growing List of Use Cases Across Application Segments for High Performance Polymers
  • 4.4. Thermal Management Systems: Lightweighting Objectives Create New Heat Dissipation Problems
  • 4.5. Thermal Management Systems: PPS and PPA Top in Design Simplification and Endurance
  • 4.6. Fuel Systems: OEMs Scramble to Meet CARB and EPA Standards
  • 4.7. Fuel Systems: PPA and PPS Meet Changing Dynamics in Material Selection Criteria
  • 4.8. Powertrain: Lightweighting and Parts Consolidation Possibilities Being Explored
  • 4.9. Powertrain: PEEK Offers Unmatched Benefits While PPA Wins in Cost/Performance
  • 4.10. Electrical & Electronics: Increase in Miniaturization Lead to Complexities in Material Selection
  • 4.11. Electrical & Electronics: PPA Leads in Lightweighting While PPS Offers Better Processability

5.0. HIGH PERFORMANCE POLYMERS IN THE AEROSPACE INDUSTRY

  • 5.1. Material Processing Key to Meet New Design Standards
  • 5.2. Identification of End Use Cases in the Aerospace Industry
  • 5.3. Cabin Interiors: Need for Tough Pre-coloured Thin-walled Parts With Smooth Surfaces
  • 5.4. Cabin Interiors: PEI and PPSU Simplify Processing Steps to Surface Finish
  • 5.5. Aerostructure: Aerodynamics-enabled Efficiency Improvements Driving Change
  • 5.6. Aerostructure: PEEK-based Composites Lead the Way in Metal-to-polymer Transition
  • 5.7. Systems and Support: Electrification and Electronic Control Systems Create New Challenges
  • 5.8. System and Support: LCP Exceeds PPA Performance, While PEEK and PPS Remain on Top
  • 5.9. Propulsion: Composites Drive Engine Design as Nacelle Parts are Developed Using Plastics
  • 5.10. Propulsion: Composites Using PI and PEEK Ideal For Hot Sections of Aircraft

6.0. KEY INNOVATORS AND INNOVATIONS IN HIGH PERFORMANCE POLYMERS

  • 6.1. Bio-renewable PEEK and 3D Printable PEEK Grades are Being Explored
  • 6.2. 3D Printed Aircraft Wind Blades - A Possibility With PEEK
  • 6.3. Composite Development Redefining Strength and Endurance
  • 6.4. PEI Composites Offer Lightweighting and Ideal For Interiors
  • 6.5. Wear-friction Grades of PAI With Enhanced Electrical Properties
  • 6.6. New Variants of PAI and PPA to Improve Engine Efficiencies
  • 6.7. Modified PI Expands Horizon of Polymers in Automotive

7.0. INTELLECTUAL PROPERTY LANDSCAPE ANALYSIS (2015-2017)

  • 7.1. Patent Filing Trends Indicate Consistent Growth in Research Interest
  • 7.2. SABIC Leads in Patent Filings Followed by BASF
  • 7.3. OEMs Such as Ford and General Motors are in Forefront of IP Filings in Automotive Sector
  • 7.4. Airbus and Boeing are Considered as Trailblazers in Enabling New Design Using HPPs for Aerospace Applications

8.0. KEY PATENTS

  • 8.1. Key Patents Related to New Processes in Aerospace
  • 8.2. Key Patents Related to Polyphenylene Sulfide (PPS)
  • 8.3. Key Patents Related to Polyetheretherketone (PEEK)
  • 8.4. Key Patents Related to Thermoplastic Polyimide (PI)
  • 8.5. Key Patents Related to Polyetherimide (PEI)
  • 8.6. Key Patents Related to Polyamideimide (PAI)
  • 8.7. Key Patents Related to Polyphenylenesulfone (PPSU)
  • 8.8. Key Patents Related to Polyethersulfone (PESU)
  • 8.9. Key Patents Related to Polysulfone (PSU)
  • 8.10. Key Patents Related to Polyphthalamide (PPA)
  • 8.11. Key Patents Related to Per Fluoroalkoxy Alkane (PFA)
  • 8.12. Key Patents Related to Liquid Crystal Polymer (LCP)
  • 8.13. Key Patents Related to Poly Aryl Amide (PARA)

9.0. KEY CONTACTS

  • 9.1. Key Contacts
  • Legal Disclaimer
Back to Top