特集 : 国別レポートが13,000件から検索可能になりました!

特集 : 海外市場の委託調査がセミカスタムベースでお手軽にできます

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

カーボンナノマテリアルの世界市場:2020年

The Global Market for Carbon Nanomaterials 2020

発行 Future Markets, Inc. 商品コード 928259
出版日 ページ情報 英文 735 pages
即納可能
価格
本日の銀行送金レート: 1GBP=142.71円で換算しております。
カーボンナノマテリアルの世界市場:2020年 The Global Market for Carbon Nanomaterials 2020
出版日: 2020年03月31日 ページ情報: 英文 735 pages
概要

炭素系ナノマテリアルには、フラーレン、カーボンナノチューブ (CNT)、グラフェンおよびその誘導体、酸化グラフェン、ナノダイヤモンド、炭素系量子ドット (CQD) などがあります。カーボンナノマテリアルは、そのユニークな構造寸法と優れた機械的、電気的、熱的、光学的、化学的特性により、幅広い産業市場で大きな関心を集めています。

カーボンナノチューブ (CNT) とグラフェンは、我々が知る限り最も強く、最も軽く、最も導電性の高い繊維であり、重量当たりの性能は他のどの材料よりも優れています。多くの市場では直接競合していますが、その他の市場では補完関係にあります。

当レポートでは、世界のカーボンナノチューブ・グラフェン・2Dナノマテリアル、ナノダイヤモンド市場について調査分析し、生産量、商業化、技術動向、製品概要、比較分析、市場の評価、エンドユーザー市場の評価、企業プロファイルなど、体系的な情報を提供しています。

目次

第1章 エグゼクティブサマリー

第2章 グラフェンの概要

  • 歴史
  • グラフェンの種類
  • 特性
  • グラフェン量子ドット

第3章 カーボンナノチューブの概要

  • 特性
  • 多層ナノチューブ (MWCNT)
  • 単層カーボンナノチューブ (SWCNT)
  • MWCNTとSWCNTの比較
  • 二重壁カーボンナノチューブ (DWNT)
  • 数層カーボンナノチューブ (FWNT)
  • カーボンナノホーン (CNH)
  • カーボンオニオン
  • 窒化ホウ素ナノチューブ (BNNT)

第4章 フラーレンの概要

  • 特性
  • 用途

第5章 ナノダイヤモンドの概要

  • 製造方法
  • 用途

第6章 グラフェンの生産

第7章 カーボンナノチューブの製造

第8章 グラフェンの特許と刊行物

第9章 カーボンナノチューブの特許

第10章 グラフェンの生産

  • 商業生産能力
  • 酸化グラフェンと還元酸化グラフェンの生産能力
  • グラフェンナノプレートレットの生産能力
  • CVDグラフェン膜
  • グラフェン生産の問題と課題

第11章 カーボンナノマテリアルの価格

  • グラフェンの価格
  • カーボンナノチューブの価格
  • ナノダイヤモンドの価格
  • フラーレンの価格

第12章 3Dプリンティングにおけるカーボンナノマテリアル

  • 市場概要
  • 用途
  • 市場評価
  • 市場予測
  • 製品開発者

第13章 接着剤におけるカーボンナノマテリアル

  • 市場概要
  • 用途
  • 市場の見通し
  • 市場評価
  • 市場予測
  • 製品開発者

第14章 航空宇宙におけるカーボンナノマテリアル

  • 市場概要
  • 用途
  • 市場の見通し
  • 市場評価
  • 市場予測
  • 製品開発者

第15章 自動車におけるカーボンナノマテリアル

  • 市場概要
  • 用途
  • 市場の見通し
  • 市場評価
  • 市場予測
  • 製品開発者

第16章 電池におけるカーボンナノマテリアル

  • 市場概要
  • 用途
  • 市場の見通し
  • 市場評価
  • 市場予測
  • 製品開発者

第17章 複合材料におけるカーボンナノマテリアル

  • 市場概要
  • 繊維ベースの高分子複合部品
  • 金属マトリックス複合材料
  • 市場予測
  • 製品開発者

第18章 導電性インクにおけるカーボンナノマテリアル

  • 市場概要
  • 用途
  • 市場の見通し
  • 市場評価
  • 市場予測
  • 製品開発者

第19章 建設におけるカーボンナノマテリアル

  • 市場概要
  • 市場の見通し
  • 市場評価
  • 市場予測
  • 製品開発者

第20章 エレクトロニクスにおけるカーボンナノマテリアル

  • ウェアラブル電子機器およびディスプレイ
  • トランジスタおよび集積回路におけるカーボンナノマテリアル
  • メモリデバイスにおけるカーボンナノマテリアル

第21章 ろ過におけるカーボンナノマテリアル

  • 市場概要
  • 用途
  • 市場の見通し
  • 市場評価
  • 市場予測
  • 製品開発者

第22章 燃料電池におけるカーボンナノマテリアル

  • 市場概要
  • 用途
  • 市場の見通し
  • 市場評価
  • 市場予測
  • 製品開発者

第23章 ライフサイエンスと医療におけるカーボンナノマテリアル

  • 市場概要
  • 用途
  • 市場の見通し
  • 市場評価
  • 市場予測
  • 製品開発者

第24章 照明におけるカーボンナノマテリアル

  • 市場概要
  • 用途
  • 市場の見通し
  • 市場評価
  • 市場予測
  • 製品開発者

第25章 潤滑剤におけるカーボンナノマテリアル

  • 市場概要
  • 用途
  • 市場の見通し
  • 市場評価
  • 市場予測
  • 製品開発者

第26章 石油およびガスにおけるカーボンナノマテリアル

  • 市場概要
  • 用途
  • 市場の見通し
  • 市場評価
  • 市場予測
  • 製品開発者

第27章 塗料およびコーティングにおけるカーボンナノマテリアル

  • 市場概要
  • 用途
  • 市場の見通し
  • 市場評価
  • 市場予測
  • 製品開発者

第28章 フォトニクスにおけるカーボンナノマテリアル

  • 市場概要
  • 用途
  • 市場の見通し
  • 市場評価
  • 市場予測
  • 製品開発者

第29章 太陽光発電におけるカーボンナノマテリアル

  • 市場概要
  • 用途
  • 市場の見通し
  • 市場評価
  • 市場予測
  • 製品開発者

第30章 ゴム・タイヤにおけるカーボンナノマテリアル

  • 市場概要
  • 用途
  • 市場の見通し
  • 市場評価
  • 市場予測
  • 製品開発者

第31章 センサーにおけるカーボンナノマテリアル

  • 市場概要
  • 用途
  • 市場の見通し
  • 市場評価
  • 市場予測
  • 製品開発者

第32章 スマートテキスタイルおよびアパレルにおけるカーボンナノマテリアル

  • 市場概要
  • 用途
  • 市場の見通し
  • 市場評価
  • 市場予測
  • 製品開発者

第33章 スーパーコンデンサーにおけるカーボンナノマテリアル

  • 市場概要
  • 用途
  • 市場の見通し
  • 市場評価
  • 市場予測
  • 製品開発者

第34章 その他の市場

  • 電子研磨材料
  • 化粧品
  • ケーブリング
  • 熱インターフェイス材料
  • 帯電防止プラスチック部品

第35章 グラフェン企業のプロファイル

第36章 マルチウォールカーボンナノチューブ企業のプロファイル

第37章 単層カーボンナノチューブ企業のプロファイル

第38章 ナノダイヤモンド企業のプロファイル

第39章 フラーレン企業のプロファイル

第40章 その他の2Dマテリアル

  • ボロフェン
  • ホスホレン
  • グラファイトカーボンナイトライド (g-C3N4)
  • ゲルマネン
  • グラフジイン
  • グラファン
  • 六方ほう素窒化物
  • 二硫化モリブデン (MoS2)
  • 二硫化レニウム (ReS2) およびジセレニド (ReSe2)
  • シリセン
  • スタネン / チネン
  • タングステンジセレニド
  • アンチモン
  • ダイアメン
  • セレン化インジウム
  • グラフェンと他の2D材料の比較分析

第41章 調査手法

第42章 索引

図表

Tables

  • Table 1. Main graphene producers by country, annual production capacities, types and main markets they sell into 2020
  • Table 2. Demand for graphene (tons), 2018-2030
  • Table 3. Main graphene producers in North America
  • Table 4. Main graphene producers in Europe
  • Table 5: Consumer products incorporating graphene
  • Table 6: Graphene investments and financial agreements
  • Table 7. Graphene industrial collaborations, licence agreements and target markets
  • Table 8. Graphene market challenges
  • Table 9. Market summary for carbon nanotubes-Selling grade particle diameter, usage, advantages, average price/ton, high volume applications, low volume applications and novel applications
  • Table 10. Typical properties of SWCNT and MWCNT
  • Table 11: Properties of CNTs and comparable materials
  • Table 12. Key MWCNT producers
  • Table 13. Annual production capacity of the key MWCNT producers in 2018
  • Table 14. MWCNT market demand forecast (tons), 2018-2030
  • Table 15. Comparative properties of MWCNT and SWCNT
  • Table 16. Annual production capacity of the key SWCNT producers in 2018
  • Table 17. SWCNT market demand forecast (tons), 2018-2030. *
  • Table 18: Properties of graphene, properties of competing materials, applications thereof
  • Table 19. Comparison of graphene QDs and semiconductor QDs
  • Table 20. Graphene quantum dot producers
  • Table 21: Properties of carbon nanotubes
  • Table 22: Markets, benefits and applications of Single-Walled Carbon Nanotubes
  • Table 23: Comparison between single-walled carbon nanotubes and multi-walled carbon nanotubes
  • Table 24. Comparative properties of BNNTs and CNTs
  • Table 25: Markets, benefits and applications of fullerenes
  • Table 26. Summary of types of NDS and production methods-advantages and disadvantages
  • Table 27: Markets, benefits and applications of nanodiamonds
  • Table 28. Assessment of graphene production methods
  • Table 29: SWCNT synthesis methods
  • Table 30: Accumulated number of patent publications for graphene, 2004-2018
  • Table 31. Location of SWCNT patent filings 2008-2018
  • Table 32. Main SWCNT patent assignees
  • Table 33. Demand for graphene (tons), 2018-2030
  • Table 34: Graphene oxide production capacity by producer, 2010-2019
  • Table 35: Graphene oxide production capacity in tons by region, 2010-2019
  • Table 36: Graphene nanoplatelets capacity in tons by producer, 2010-2018
  • Table 37: Graphene nanoplatelets capacity in tons by region, 2010-2019
  • Table 38: CVD graphene film capacity by producer, 2010-2018/ 000s m2
  • Table 39: Types of graphene and typical prices
  • Table 40: Pristine graphene flakes pricing by producer
  • Table 41: Few-layer graphene pricing by producer
  • Table 42: Graphene nanoplatelets pricing by producer
  • Table 43: Graphene oxide and reduced graphene oxide pricing, by producer
  • Table 44: Graphene quantum dots pricing by producer
  • Table 45: Multi-layer graphene pricing by producer
  • Table 46: Graphene ink pricing by producer
  • Table 47. Carbon nanotubes pricing (MWCNTS, SWCNT etc.) by producer
  • Table 48. Nanodiamonds pricing by producer/distributor
  • Table 49. Fullerenes pricing by producer
  • Table 50. Market overview for carbon nanomaterials in 3D printing
  • Table 51. Applications of carbon nanomaterials in 3D printing
  • Table 52. Market and applications for carbon nanomaterials in 3D printing
  • Table 53: Demand for carbon nanomaterials in 3-D printing (tons), 2018-2030
  • Table 54: Product developers in carbon nanomaterials in 3D printing
  • Table 55. Market overview for carbon nanomaterials in adhesives
  • Table 56. Applications of carbon nanomaterials in adhesives
  • Table 57. Scorecard for carbon nanomaterials in adhesives
  • Table 58. Market and applications for carbon nanomaterials in adhesives
  • Table 59: Demand for carbon nanomaterials in adhesives (tons), 2018-2030
  • Table 60: Product developers in carbon nanomaterials for adhesives
  • Table 61. Market overview for carbon nanomaterials in aerospace
  • Table 62. Applications of carbon nanomaterials in aerospace
  • Table 63. Scorecard for carbon nanomaterials in aerospace
  • Table 64. Market and applications for carbon nanomaterials in aerospace
  • Table 65: Demand for carbon nanomaterials in aerospace (tons), 2018-2030
  • Table 66: Product developers in carbon nanomaterials for aerospace
  • Table 67. Market overview for carbon nanomaterials in automotive
  • Table 68. Applications of carbon nanomaterials in automotive
  • Table 69. Scorecard for carbon nanomaterials in automotive
  • Table 70. Market and applications for carbon nanomaterials in automotive
  • Table 71: Demand for carbon nanomaterials in automotive (tons), 2018-2030
  • Table 72: Product developers in carbon nanomaterials in the automotive market
  • Table 73. Market overview for carbon nanomaterials in batteries
  • Table 74. Applications of carbon nanomaterials in batteries
  • Table 75. Scorecard for carbon nanomaterials in batteries
  • Table 76. Market and applications for carbon nanomaterials in batteries
  • Table 77: Estimated demand for carbon nanomaterials in batteries (tons), 2018-2030
  • Table 78: Product developers in carbon nanomaterials for batteries
  • Table 79. Market overview for carbon nanomaterials in composites
  • Table 80. Scorecard for carbon nanomaterials in fiber-based polymer composite parts
  • Table 81. Applications of carbon nanomaterials in fiber-based polymer composite parts
  • Table 82. Market and applications for carbon nanomaterials in fiber-based composite parts
  • Table 83. Market and applications for carbon nanomaterials in metal matrix composites
  • Table 84. Global market for carbon nanomaterials in composites 2018-2030, tons
  • Table 85: Product developers in carbon nanomaterials composites
  • Table 86. Market overview for carbon nanomaterials in conductive inks
  • Table 87. Applications of carbon nanomaterials in conductive ink
  • Table 88. Scorecard for carbon nanomaterials in conductive inks
  • Table 89. Market and applications for carbon nanomaterials in conductive inks
  • Table 90. Comparative properties of conductive inks
  • Table 91: Demand for graphene in conductive ink (tons), 2018-2027
  • Table 92: Product developers in carbon nanomaterials for conductive inks
  • Table 93. Market overview for carbon nanomaterials in construction
  • Table 94. Scorecard for carbon nanomaterials in construction
  • Table 95. Carbon nanomaterials for cement
  • Table 96. Carbon nanomaterials for asphalt bitumen
  • Table 97: Demand for carbon nanomaterials in construction (tons), 2018-2030
  • Table 98: Carbon nanomaterials product developers in construction
  • Table 99. Market overview for carbon nanomaterials in wearable electronics and displays
  • Table 100. Scorecard for carbon nanomaterials in wearable electronics and displays
  • Table 101. Applications of carbon nanomaterials in wearable electronics and displays
  • Table 102. Market and applications for carbon nanomaterials in wearable electronics and displays
  • Table 103: Comparison of ITO replacements
  • Table 104: Demand for carbon nanomaterials in wearable electronics and displays, 2018-2030
  • Table 105: Product developers in carbon nanomaterials for electronics
  • Table 106. Market overview for carbon nanomaterials in transistors and integrated circuits
  • Table 107. Applications of carbon nanomaterials in transistors and integrated circuits
  • Table 108. Scorecard for carbon nanomaterials in transistors and integrated circuits
  • Table 109. Market and applications for carbon nanomaterials in transistors and integrated circuits
  • Table 110: Demand for carbon nanomaterials in transistors and integrated circuits, 2018-2030
  • Table 111: Product developers in carbon nanomaterials transistors and integrated circuits
  • Table 112. Market overview for carbon nanomaterials in memory devices
  • Table 113. Scorecard for carbon nanomaterials in memory devices
  • Table 114. Market and applications for carbon nanomaterials in memory devices
  • Table 115: Demand for carbon nanomaterials in memory devices, 2018-2030
  • Table 116: Product developers in carbon nanomaterials for memory devices
  • Table 117: Comparison of CNT membranes with other membrane technologies
  • Table 118. Market overview for carbon nanomaterials in filtration
  • Table 119. Applications of carbon nanomaterials in filtration
  • Table 120. Scorecard for carbon nanomaterials in filtration
  • Table 121. Market and applications for carbon nanomaterials in filtration
  • Table 122: Demand for carbon nanomaterials in filtration (tons), 2018-2030
  • Table 123: Carbon nanomaterials companies in filtration
  • Table 124. Electrical conductivity of different catalyst supports compared to carbon nanotubes
  • Table 125. Market overview for carbon nanomaterials in fuel cells
  • Table 126. Applications of carbon nanomaterials in fuel cells
  • Table 127. Scorecard for carbon nanomaterials in fuel cells
  • Table 128. Market and applications for carbon nanomaterials in fuel cells
  • Table 129: Demand for carbon nanomaterials in fuel cells (tons), 2018-2030
  • Table 130: Product developers in carbon nanomaterials for fuel cells
  • Table 131. Market overview for carbon nanomaterials in life sciences and medicine
  • Table 132. Applications of carbon nanomaterials in life sciences and biomedicine
  • Table 133. Scorecard for carbon nanomaterials in drug delivery
  • Table 134. Scorecard for carbon nanomaterials in imaging and diagnostics
  • Table 135. Scorecard for carbon nanomaterials in medical implants
  • Table 136. Scorecard for carbon nanomaterials in medical biosensors
  • Table 137. Scorecard for carbon nanomaterials in woundcare
  • Table 138. Market and applications for carbon nanomaterials in life sciences and medicine
  • Table 139: Demand for carbon nanomaterials in life sciences and medical (tons), 2018-2030
  • Table 140: Product developers in carbon nanomaterials for life sciences and biomedicine
  • Table 141. Market overview for carbon nanomaterials in lighting
  • Table 142. Applications of carbon nanomaterials in lighting
  • Table 143. Scorecard for carbon nanomaterials in lighting
  • Table 144. Market and applications for carbon nanomaterials in lighting
  • Table 145: Demand for carbon nanomaterials in lighting, 2018-2030
  • Table 146: Product developers in carbon nanomaterials for lighting
  • Table 147. Market overview for carbon nanomaterials in lubricants
  • Table 148. Nanomaterial lubricant products
  • Table 149. Applications of carbon nanomaterials in lubricants
  • Table 150. Scorecard for carbon nanomaterials in lubricants
  • Table 151. Market and applications for carbon nanomaterials in lubricants
  • Table 152: Demand for carbon nanomaterials in lubricants (tons), 2018-2030
  • Table 153: Product developers in carbon nanomaterials for lubricants
  • Table 154. Market overview for carbon nanomaterials in oil and gas
  • Table 155. Applications of carbon nanomaterials in oil and gas
  • Table 156. Scorecard for carbon nanomaterials in oil and gas
  • Table 157. Market and applications for carbon nanomaterials in oil and gas
  • Table 158: Demand for carbon nanomaterials in oil and gas (tons), 2018-2030
  • Table 159: Product developers in carbon nanomaterials for oil and gas
  • Table 160. Markets for nanocoatings
  • Table 161. Market overview for carbon nanomaterials in paints and coatings
  • Table 162. Applications of carbon nanomaterials in paints and coatings
  • Table 163. Scorecard for carbon nanomaterials in paints and coatings
  • Table 164. Market and applications for carbon nanomaterials in paints and coatings
  • Table 165: Demand for carbon nanomaterials in paints and coatings (tons), 2018-2030
  • Table 166: Product developers in carbon nanomaterials for paints and coatings
  • Table 167. Market overview for carbon nanomaterials in photonics
  • Table 168. Applications of carbon nanomaterials in photonics
  • Table 169. Scorecard for carbon nanomaterials in photonics
  • Table 170. Market and applications for carbon nanomaterials in photonics
  • Table 171: Demand for carbon nanomaterials in photonics, 2018-2030
  • Table 172: Product developers in carbon nanomaterials in photonics
  • Table 173. Market overview for carbon nanomaterials in photovoltaics
  • Table 174. Applications of carbon nanomaterials in photovoltaics
  • Table 175. Scorecard for carbon nanomaterials in photovoltaics
  • Table 176. Market and applications for carbon nanomaterials in photovoltaics
  • Table 177: Demand for carbon nanomaterials in photovoltaics (tons), 2018-2030
  • Table 178: Product developers in carbon nanomaterials for solar
  • Table 179. Market overview for carbon nanomaterials in rubber and tires
  • Table 180. Applications of carbon nanomaterials in rubber and tires
  • Table 181. Scorecard for carbon nanomaterials in rubber and tires
  • Table 182. Market and applications for carbon nanomaterials in rubber and tires
  • Table 183: Demand for carbon nanomaterials in rubber and tires (tons), 2018-2030
  • Table 184: Product developers in carbon nanomaterials in rubber and tires
  • Table 185. Market overview for carbon nanomaterials in sensors
  • Table 186. Applications of carbon nanomaterials in sensors
  • Table 187. Scorecard for carbon nanomaterials in sensors
  • Table 188. Market and applications for carbon nanomaterials in sensors
  • Table 189: Demand for carbon nanomaterials in sensors (tons), 2018-2030
  • Table 190: Product developers in carbon nanomaterials for sensors
  • Table 191: Desirable functional properties for the textiles industry afforded by the use of nanomaterials
  • Table 192. Market overview for carbon nanomaterials in smart textiles and apparel
  • Table 193. Applications of carbon nanomaterials in smart textiles and apparel
  • Table 194. Scorecard for carbon nanomaterials in smart textiles and apparel
  • Table 195. Market and applications for carbon nanomaterials in smart textiles and apparel
  • Table 196: Demand for carbon nanomaterials in textiles (tons), 2018-2030
  • Table 197: Carbon nanomaterials product developers in smart textiles and apparel
  • Table 198. Market overview for carbon nanomaterials in supercapacitors
  • Table 199. Applications of carbon nanomaterials in supercapacitors
  • Table 200. Scorecard for carbon nanomaterials in supercapacitors
  • Table 201: Comparative properties of graphene supercapacitors and lithium-ion batteries
  • Table 202. Market and applications for carbon nanomaterials in supercapacitors
  • Table 203: Demand for carbon nanomaterials in supercapacitors (tons), 2018-2030
  • Table 204: Product developers in carbon nanomaterials for supercapacitors
  • Table 205. Carbon nanomaterials scorecard for nanodiamonds in electronic polishing materials
  • Table 206: Market overview for carbon nanomaterials in polishing materials
  • Table 207. Market and applications for carbon nanomaterials in polishing materials
  • Table 208. Nanomaterials scorecard for carbon nanomaterials in cosmetics
  • Table 209: Market overview for carbon nanomaterials in cosmetics
  • Table 210. Market and applications for carbon nanomaterials in cosmetics
  • Table 211. Market and applications for carbon nanomaterials in cabling
  • Table 212. Market and applications for carbon nanomaterials in cabling
  • Table 213. Market and applications for carbon nanomaterials in anti-static plastic parts
  • Table 214. Sensor surface
  • Table 215. Ex-graphene producers and product developers
  • Table 216: CNT producers and companies they supply/licence to
  • Table 217. Properties of carbon nanotube paper
  • Table 218. Ex-producers of SWCNTs
  • Table 219. SWCNTs distributors
  • Table 220. Ex-producers of nanodiamonds
  • Table 221: 2D materials types
  • Table 222: Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2
  • Table 223: Comparative analysis of graphene and other 2-D nanomaterials
  • Table 224: Categorization of nanomaterials

Figures

  • Figure 1. Demand for graphene, by market, 2019
  • Figure 2. Demand for graphene, by market, 2030
  • Figure 3. Demand for graphene, 2018-2030, tons
  • Figure 4. Global graphene demand by market, 2018-2030 (tons). Low estimate
  • Figure 5. Global graphene demand by market, 2018-2030 (tons). Medium estimate
  • Figure 6. Global graphene demand by market, 2018-2030 (tons). High estimate
  • Figure 7: Demand for graphene in China, by market, 2019
  • Figure 8: Demand for graphene in Asia-Pacific, by market, 2019
  • Figure 9. Main graphene producers in Asia-Pacific
  • Figure 10: Demand for graphene in North America, by market, 2019
  • Figure 11: Demand for graphene in Europe, by market, 2018
  • Figure 12. Demand for MWCNT by application in 2019
  • Figure 13. SWCNT production capacity by producer in 2018 (tons)
  • Figure 14. Calculated SWCNT sales volume by producer in 2018 (kg)
  • Figure 15. The structure of eight different allotropes of the carbon element
  • Figure 16: Graphene layer structure schematic
  • Figure 17: Illustrative procedure of the Scotch-tape based micromechanical cleavage of HOPG
  • Figure 18: Graphite and graphene
  • Figure 19: Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene.
  • Figure 20: Green-fluorescing graphene quantum dots
  • Figure 21. Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1-4)
  • Figure 22. Graphene quantum dots
  • Figure 23: Schematic of single-walled carbon nanotube
  • Figure 24: TIM sheet developed by Zeon Corporation
  • Figure 25: Double-walled carbon nanotube bundle cross-section micrograph and model
  • Figure 26. TEM image of FWNTs
  • Figure 27: Schematic representation of carbon nanohorns
  • Figure 28: TEM image of carbon onion
  • Figure 29: Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red
  • Figure 30: Fullerene schematic
  • Figure 31. Fabrication methods of graphene
  • Figure 32. TEM micrographs of: A) HR-CNFs; B) GANF® HR-CNF, it can be observed its high graphitic structure; C) Unraveled ribbon from the HR-CNF; D) Detail of the ribbon; E) Scheme of the structure of the HR-CNFs; F) Large single graphene oxide sheets derived from GANF
  • Figure 33: (a) Graphene powder production line in The Sixth Element Materials Technology Co. Ltd. (b) Graphene film production line of Wuxi Graphene Films Co. Ltd
  • Figure 34. Schematic illustration of the main graphene production methods
  • Figure 35: Schematic representation of methods used for carbon nanotube synthesis (a) Arc discharge (b) Chemical vapor deposition (c) Laser ablation (d) hydrocarbon flames
  • Figure 36: Arc discharge process for CNTs
  • Figure 37: Schematic of thermal-CVD method
  • Figure 38: Schematic of plasma-CVD method
  • Figure 39: CoMoCAT® process
  • Figure 40: Schematic for flame synthesis of carbon nanotubes (a) premixed flame (b) counter-flow diffusion flame (c) co-flow diffusion flame (d) inverse diffusion flame
  • Figure 41: Schematic of laser ablation synthesis
  • Figure 42: Published patent publications for graphene, 2004-2018
  • Figure 43: MWCNT patents filed 2007-2019
  • Figure 44. SWCNT patent applications 2001-2018
  • Figure 45. Demand for graphene, 2018-2030, tons
  • Figure 46: Graphene oxide production capacity in tons by region, 2010-2019
  • Figure 47: Graphene nanoplatelets capacity in tons by region, 2010-2019
  • Figure 48: CVD Graphene on Cu Foil
  • Figure 49: Demand for carbon nanomaterials in 3-D printing (tons), 2018-2030
  • Figure 50. CNCTArch lightweight mounting for digital signalling
  • Figure 51: Demand for carbon nanomaterials in adhesives (tons), 2018-2030
  • Figure 52: Graphene Adhesives
  • Figure 53. Carbon nanotube Composite Overwrap Pressure Vessel (COPV) developed by NASA
  • Figure 54: Demand for carbon nanomaterials in aerospace (tons), 2018-2030
  • Figure 55. HeatCoat technology schematic
  • Figure 56. Orbex Prime rocket
  • Figure 57: Graphene enhanced aircraft cargo container
  • Figure 58: Graphene aircraft
  • Figure 59: Veelo carbon fiber nanotube sheet
  • Figure 60: Demand for carbon nanomaterials in automotive (tons), 2018-2030
  • Figure 61: Supercar incorporating graphene
  • Figure 62: Schematic of CNTs as heat-dissipation sheets
  • Figure 63. Graphene anti-corrosion primer
  • Figure 64. Graphene-R Brake pads
  • Figure 65: Antistatic graphene tire
  • Figure 66. Graphene engine oil additives
  • Figure 67: Demand for carbon nanomaterials in batteries (tons), 2018-2030
  • Figure 68: Nano Lithium X Battery
  • Figure 69. Apollo Traveler graphene-enhanced USB-C / A fast charging power bank
  • Figure 70. 6000mAh Portable graphene batteries
  • Figure 71. Real Graphene Powerbank
  • Figure 72. Graphene Functional Films - UniTran EH/FH
  • Figure 73. Demand for carbon nanomaterials in composites (tons), 2018-2030
  • Figure 74. Graphene bike
  • Figure 75. Graphene lacrosse equipment
  • Figure 76. CNT anti-icing coating for wind turbines
  • Figure 77. Graphene-based suitcase made from recycled plastic
  • Figure 78. Aros Create
  • Figure 79. CSCNT Reinforced Prepreg
  • Figure 80. Grays graphene hockey sticks
  • Figure 81: Demand for graphene in conductive ink (tons), 2018-2030
  • Figure 82: BGT Materials graphene ink product
  • Figure 83: Nanotube inks
  • Figure 84: Printed graphene conductive ink
  • Figure 85: Textiles covered in conductive graphene ink
  • Figure 86. Comparison of nanofillers with supplementary cementitious materials and aggregates in concrete
  • Figure 87: Demand for carbon nanomaterials in construction (tons), 2018-2030
  • Figure 88. Graphene asphalt additives
  • Figure 89. OG (Original Graphene) Concrete Admix Plus
  • Figure 90: Demand for carbon nanomaterials in wearable electronics and displays, 2018-2030
  • Figure 91: Moxi flexible film developed for smartphone application
  • Figure 92. Strategic Elements' transparent glass demonstrator
  • Figure 93: Carbon nanotube-based colour active matrix electrophoretic display (EPD) e-paper
  • Figure 94: Demand for carbon nanomaterials in transistors and integrated circuits, 2018-2030
  • Figure 95. Graphene IC in wafer tester
  • Figure 96: Schematic cross-section of a graphene based transistor (GBT, left) and a graphene field-effect transistor (GFET, right)
  • Figure 97: Thin film transistor incorporating CNTs
  • Figure 98: Demand for carbon nanomaterials in memory devices, 2018-2030
  • Figure 99: Carbon nanotubes NRAM chip
  • Figure 100. Layered structure of tantalum oxide, multilayer graphene and platinum used for resistive random-access memory (RRAM)
  • Figure 101: Demand for carbon nanomaterials in filtration (tons), 2018-2030
  • Figure 102. Graphene anti-smog mask
  • Figure 103. Graphene filtration membrane
  • Figure 104. Water filer cartridge
  • Figure 105: Demand for carbon nanomaterials in fuel cells (tons), 2018-2030
  • Figure 106. Graphene-based E-skin patch
  • Figure 107: Demand for carbon nanomaterials in life sciences and medical (tons), 2018-2030
  • Figure 108: CARESTREAM DRX-Revolution Nano Mobile X-ray System
  • Figure 109. Graphene medical biosensors for wound healing
  • Figure 110: Graphene Frontiers' Six™ chemical sensors consists of a field effect transistor (FET) with a graphene channel. Receptor molecules, such as DNA, are attached directly to the graphene channel
  • Figure 111: GraphWear wearable sweat sensor
  • Figure 112: Demand for carbon nanomaterials in lighting, 2018-2030
  • Figure 113. Graphene LED bulbs
  • Figure 114: Demand for carbon nanomaterials in lubricants (tons), 2018-2030
  • Figure 115. Tricolit spray coating
  • Figure 116. Graphenoil products
  • Figure 117: Demand for carbon nanomaterials in oil and gas (tons), 2018-2030
  • Figure 118: Directa Plus Grafysorber
  • Figure 119: Demand for carbon nanomaterials in paints and coatings (tons), 2018-2030
  • Figure 120. Cryorig CPU cooling system with graphene coating
  • Figure 121: Four layers of graphene oxide coatings on polycarbonate
  • Figure 122. CSCNT Reinforced Prepreg
  • Figure 123. 23303 ZINCTON GNC graphene paint
  • Figure 124. Graphene-enhanced anti-corrosion aerosols under their Hycote brand
  • Figure 125. Scania Truck head lamp brackets ACT chamber 6 weeks, equivalent to 3y field use. Piece treated with GO to the left together with different non-GO coatings
  • Figure 126. Schematic of graphene heat film
  • Figure 127: Demand for carbon nanomaterials in photonics, 2018-2030
  • Figure 128. All-graphene optical communication link demonstrator operating at a data rate of 25 Gb/s per channel
  • Figure 129: Demand for carbon nanomaterials in photovoltaics (tons), 2018-2030
  • Figure 130: Suntech/TCNT nanotube frame module
  • Figure 131. Graphene coated glass
  • Figure 132: Demand for carbon nanomaterials in rubber and tires (tons), 2018-2030
  • Figure 133. Eagle F1 graphene tire
  • Figure 134. Graphene floor mats
  • Figure 135. Vittoria Corsa G+ tire
  • Figure 136. Graphene-based sensors for health monitoring
  • Figure 137: Demand for carbon nanomaterials in sensors (tons), 2018-2030
  • Figure 138. AGILE R100 system
  • Figure 139. Graphene fully packaged linear array detector
  • Figure 140: GFET sensors
  • Figure 141. Graphene is used to increase sensitivity to middle-infrared light
  • Figure 142: Demand for carbon nanomaterials in textiles (tons), 2018-2030
  • Figure 143. Colmar graphene ski jacket
  • Figure 144. Graphene dress. The dress changes colour in sync with the wearer's breathing
  • Figure 145. G+ Graphene Aero Jersey
  • Figure 146: Inov-8 graphene shoes
  • Figure 147. Graphene Functional Membranes - UniTran GM
  • Figure 148. Graphene jacket
  • Figure 149: Demand for carbon nanomaterials in supercapacitors (tons), 2018-2030
  • Figure 150. Skeleton Technologies supercapacitor
  • Figure 151: Zapgo supercapacitor phone charger
  • Figure 152. Prototypes of nanodiamonds, fullerene and lignin sunscreen
  • Figure 153. Graphene heating films
  • Figure 154. Graphene flake products
  • Figure 155. AIKA Black-T
  • Figure 156. Printed graphene biosensors
  • Figure 157. Graphene battery schematic
  • Figure 158. Test performance after 6 weeks ACT II according to Scania STD4445
  • Figure 159. Talcoat graphene mixed with paint
  • Figure 160. T-FORCE CARDEA ZERO
  • Figure 161: Prototype of Graphene-integrated UF filter cartridge
  • Figure 162. AWN Nanotech water harvesting prototype
  • Figure 163. Carbonics, Inc.'s carbon nanotube technology
  • Figure 164. Fuji carbon nanotube products
  • Figure 165. Cup Stacked Type Carbon Nano Tubes schematic
  • Figure 166. CSCNT composite dispersion
  • Figure 167. Flexible CNT CMOS integrated circuits with sub-10 nanoseconds stage delays
  • Figure 168. Koatsu Gas Kogyo Co. Ltd CNT product
  • Figure 169. Hybrid battery powered electrica motorbike concept
  • Figure 170. Schematic illustration of three-chamber system for SWCNH production
  • Figure 171. TEM images of carbon nanobrush
  • Figure 172: Carbon nanotube paint product
  • Figure 173. HiPCO® Reactor
  • Figure 174: Schematic of 2-D materials
  • Figure 175: Borophene schematic
  • Figure 176: Black phosphorus structure
  • Figure 177: Black Phosphorus crystal
  • Figure 178: Bottom gated flexible few-layer phosphorene transistors with the hydrophobic dielectric encapsulation
  • Figure 179: Graphitic carbon nitride
  • Figure 180: Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal. Credit: Ulsan National Institute of Science and Technology
  • Figure 181: Schematic of germanene
  • Figure 182: Graphdiyne structure
  • Figure 183: Schematic of Graphane crystal
  • Figure 184: Structure of hexagonal boron nitride
  • Figure 185: BN nanosheet textiles application
  • Figure 186: Structure of 2D molybdenum disulfide
  • Figure 187: SEM image of MoS2
  • Figure 188: Atomic force microscopy image of a representative MoS2 thin-film transistor
  • Figure 189: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge
  • Figure 190: Schematic of a monolayer of rhenium disulfide
  • Figure 191: Silicene structure
  • Figure 192: Monolayer silicene on a silver (111) substrate
  • Figure 193: Silicene transistor
  • Figure 194: Crystal structure for stanene
  • Figure 195: Atomic structure model for the 2D stanene on Bi2Te3(111)
  • Figure 196: Schematic of tungsten diselenide
  • Figure 197: Schematic of Indium Selenide (InSe)
目次

Carbon based-nanomaterials include fullerenes, carbon nanotubes (CNTs), graphene and its derivatives, graphene oxide, nanodiamonds, and carbon-based quantum dots (CQDs). Due to their unique structural dimensions and excellent mechanical, electrical, thermal, optical and chemical properties, carbon nanomaterials have gained great interest in a wide range of industrial market.

Carbon nanotubes (CNTs) and graphene are the strongest, lightest and most conductive fibres known to man, with a performance-per-weight greater than any other material. In direct competition in a number of markets, they are complementary in others.

Once the most promising of all nanomaterials, MWCNTs face stiff competition in conductive applications from graphene and other 2D materials and in mechanically enhanced composites from nanocellulose. Several major producers have closed their MWCNT capacities, but applications continue to come to market and LG Chem has established a large-scale production facility. Super-aligned CNT arrays, films and yarns have found applications in consumer electronics, batteries, polymer composites, aerospace, sensors, heaters, filters and biomedicine.

Large-scale industrial production of single-walled carbon nanotubes (SWCNTs) has been initiated, promising new market opportunities in transparent conductive films, condcuctive materials, transistors, sensors and memory devices. Again, a number of producers have ceased production, but those left are finding increased demand for their materials. SCWNTs are regarded as one of the most promising candidates to utilized as building blocks in next generation electronics.

Two-dimensional(2D) materials are currently one of the most active areas of nanomaterials research, and offer a huge opportunity for both fundamental studies and practical applications, including superfast, low-power, flexible and wearable electronics, sensors, photonics and electrochemical energy storage devices that will have an immense impact on our society.

Graphene is a ground-breaking two-dimensional (2D) material that possesses extraordinary electrical and mechanical properties that promise a new generation of innovative devices. New methods of scalable synthesis of high-quality graphene, clean delamination transfer and device integration have resulted in the commercialization of state-of-the-art electronics such as graphene touchscreens in smartphones and flexible RF devices on plastics.

Nanodiamonds (NDs) are relatively easy and inexpensive to produce, and have moved towards large-scale commercialization due to their excellent mechanical, thermal properties and chemical stability.

Other carbon nanomaterials of interest include fullerenes and more recently, carbon and graphene quantum dots.

This report on the carbon nanotubes, graphene and 2D materials and nanodiamonds market is by far the most comprehensive and authoritative report produced.

Report contents include:

  • Carbon nanotubes, fullerene, nanodiamond and graphene products.
  • Assessment of carbon nanomaterials market including production volumes, competitive landscape, commercial prospects, applications, demand by market and region, commercialization timelines, prices and producer profiles.
  • Unique assessment tools for the carbon nanomaterials market, end user applications, economic impact, addressable markets and market challenges to provide the complete picture of where the real opportunities in carbon nanomaterials are.
  • Company profiles of carbon nanotubes, graphene, 2D materials, fullerenes, carbon quantum dots and nanodiamonds producers and product developers, including products, target markets and contact details
  • Market assessment of other 2D materials.
  • Assessment of carbon nanomaterials by market including applications, key benefits, market megatrends, market drivers for, technology drawbacks, competing materials, potential consumption of to 2030 and main players.
  • In depth-assessment of carbon nanomaterials producer and distributor pricing in 2020.
  • Global market for carbon nanomaterials in tons, by sector, historical and forecast to 2030.
  • Full list of technology collaborations, strategic partnerships, and M&As in the global carbon nanomaterials market.
  • In-depth profiles of carbon nanomaterials producers including products, production capacities, manufacturing methods, collaborations, licensing, customers and target markets.
  • Detailed forecasts for key growth areas, opportunities and demand.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. GRAPHENE
    • 1.1.1. Why graphene?
      • 1.1.1.1. Exceptional properties
      • 1.1.1.2. Commercial opportunities
      • 1.1.1.3. Collaboration key?
    • 1.1.2. The market in 2019
    • 1.1.3. Future global market outlook
    • 1.1.4. Graphene producers and production capacities
    • 1.1.5. Global graphene demand, 2018-2030, tons
    • 1.1.6. Graphene market by region
      • 1.1.6.1. Asia-Pacific
      • 1.1.6.2. North America
      • 1.1.6.3. Europe
    • 1.1.7. Graphene products
    • 1.1.8. Graphene investments
    • 1.1.9. Industrial collaborations and licence agreements
    • 1.1.10. Graphene market challenges
  • 1.2. CARBON NANOTUBES
    • 1.2.1. Exceptional properties
    • 1.2.2. Products and applications
    • 1.2.3. MWCNTs
      • 1.2.3.1. Applications
      • 1.2.3.2. Producers
      • 1.2.3.3. Production
      • 1.2.3.4. Market demand, tons
    • 1.2.4. SWCNTs
      • 1.2.4.1. Applications
      • 1.2.4.2. Production
      • 1.2.4.3. Market demand, tons
    • 1.2.5. Carbon nanotubes market challenges
  • 1.3. NANODIAMONDS

2. OVERVIEW OF GRAPHENE

  • 2.1. History
  • 2.2. Types of graphene
  • 2.3. Properties
  • 2.4. Graphene Quantum Dots
    • 2.4.1. Synthesis
    • 2.4.2. Applications
      • 2.4.2.1. Optoelectronics, electronics and photonics
      • 2.4.2.2. Energy
      • 2.4.2.3. Biomedicine and healthcare
      • 2.4.2.4. Other
    • 2.4.3. Pricing
    • 2.4.4. Producers

3. OVERVIEW OF CARBON NANOTUBES

  • 3.1. Properties
  • 3.2. Multi-walled nanotubes (MWCNT)
    • 3.2.1. Properties
    • 3.2.2. Applications
  • 3.3. Single-wall carbon nanotubes (SWCNT)
    • 3.3.1. Properties
    • 3.3.2. Applications
    • 3.3.3. Comparison between MWCNTs and SWCNTs
    • 3.3.4. Double-walled carbon nanotubes (DWNTs)
      • 3.3.4.1. Properties
      • 3.3.4.2. Applications
    • 3.3.5. Few-walled carbon nanotubes (FWNTs)
      • 3.3.5.1. Properties
      • 3.3.5.2. Applications
  • 3.4. Carbon Nanohorns (CNHs)
    • 3.4.1. Properties
    • 3.4.2. Applications
  • 3.5. Carbon Onions
    • 3.5.1. Properties
    • 3.5.2. Applications
  • 3.6. Boron Nitride nanotubes (BNNTs)
    • 3.6.1. Properties
    • 3.6.2. Applications

4. OVERVIEW OF FULLERENES

  • 4.1. Properties
  • 4.2. Applications

5. OVERVIEW OF NANODIAMONDS

  • 5.1. Production methods
    • 5.1.1. Fluorescent nanodiamonds (FNDs)
  • 5.2. Applications

6. GRAPHENE PRODUCTION

7. CARBON NANOTUBE PRODUCTION

8. GRAPHENE PATENTS AND PUBLICATIONS

9. CARBON NANOTUBES PATENTS

10. GRAPHENE PRODUCTION

  • 10.1. Commercial production capacities
  • 10.2. Graphene oxide and reduced Graphene Oxide production capacities
    • 10.2.1. By producer
    • 10.2.2. By region
  • 10.3. Graphene nanoplatelets production capacities
    • 10.3.1. By producer
    • 10.3.2. Production capacity by region
  • 10.4. CVD graphene film
    • 10.4.1. By producer
  • 10.5. Graphene production issues and challenges
    • 10.5.1. Oversupply
    • 10.5.2. Quality
    • 10.5.3. Large-volume markets
    • 10.5.4. Commoditisation
    • 10.5.5. Industrial end-user perspective

11. CARBON NANOMATERIALS PRICING

  • 11.1. Graphene pricing
    • 11.1.1. Pristine graphene flakes pricing/CVD graphene
    • 11.1.2. Few-Layer graphene pricing
    • 11.1.3. Graphene nanoplatelets pricing
    • 11.1.4. Graphene oxide (GO) and reduced Graphene Oxide (rGO) pricing
    • 11.1.5. Graphene quantum dots pricing
    • 11.1.6. Multilayer graphene (MLG) pricing
    • 11.1.7. Graphene ink
  • 11.2. Carbon nanotubes pricing
  • 11.3. Nanodiamonds pricing
  • 11.4. Fullerenes pricing

12. CARBON NANOMATERIALS IN 3D PRINTING

  • 12.1. Market overview
  • 12.2. Applications
  • 12.3. Market assessment
  • 12.4. Global market in tons, historical and forecast to 2030
  • 12.5. Product developers

13. CARBON NANOMATERIALS IN ADHESIVES

  • 13.1. Market overview
  • 13.2. Applications
  • 13.3. Market prospects
  • 13.4. Market assessment
  • 13.5. Global market in tons, historical and forecast to 2030
  • 13.6. Product developers

14. CARBON NANOMATERIALS IN AEROSPACE

  • 14.1. Market overview
  • 14.2. Applications
  • 14.3. Market prospects
  • 14.4. Market assessment
  • 14.5. Global market in tons, historical and forecast to 2030
  • 14.6. Product developers

15. CARBON NANOMATERIALS IN AUTOMOTIVE

  • 15.1. Market overview
  • 15.2. Applications
  • 15.3. Market prospects
  • 15.4. Market assessment
  • 15.5. Global market in tons, historical and forecast to 2030
  • 15.6. Product developers

16. CARBON NANOMATERIALS IN BATTERIES

  • 16.1. Market overview
  • 16.2. Applications
  • 16.3. Market prospects
  • 16.4. Market assessment
  • 16.5. Global market in tons, historical and forecast to 2030
  • 16.6. Product developers

17. CARBON NANOMATERIALS IN COMPOSITES

  • 17.1. Market overview
  • 17.2. Fiber-based polymer composite parts
    • 17.2.1. Market prospects
    • 17.2.2. Applications
    • 17.2.3. Market assessment
  • 17.3. Metal-matrix composites
    • 17.3.1. Market assessment
  • 17.4. Global market in tons, historical and forecast to 2030
  • 17.5. Product developers

18. CARBON NANOMATERIALS IN CONDUCTIVE INKS

  • 18.1. Market overview
  • 18.2. Applications
  • 18.3. Market prospects
  • 18.4. Market assessment
  • 18.5. Global market in tons, historical and forecast to 2030
  • 18.6. Product developers

19. CARBON NANOMATERIALS IN CONSTRUCTION

  • 19.1. Market overview
  • 19.2. Market prospects
  • 19.3. Market assessment
    • 19.3.1. Cement
    • 19.3.2. Asphalt bitumen
  • 19.4. Global market in tons, historical and forecast to 2030
  • 19.5. Product developers

20. CARBON NANOMATERIALS IN ELECTRONICS

  • 20.1. WEARABLE ELECTRONICS AND DISPLAYS
    • 20.1.1. Market overview
    • 20.1.2. Market prospects
    • 20.1.3. Applications
    • 20.1.4. Market assessment
    • 20.1.5. Global market, historical and forecast to 2030
    • 20.1.6. Product developers
  • 20.2. CARBON NANOMATERIALS IN TRANSISTORS AND INTEGRATED CIRCUITS
    • 20.2.1. Market overview
    • 20.2.2. Applications
    • 20.2.3. Market prospects
    • 20.2.4. Market assessment
    • 20.2.5. Global market, historical and forecast to 2030
    • 20.2.6. Product developers
  • 20.3. CARBON NANOMATERIALS IN MEMORY DEVICES
    • 20.3.1. Market overview
    • 20.3.2. Market prospects
    • 20.3.3. Market assessment
    • 20.3.4. Global market in tons, historical and forecast to 2030
    • 20.3.5. Product developers

21. CARBON NANOMATERIALS IN FILTRATION

  • 21.1. Market overview
  • 21.2. Applications
  • 21.3. Market prospects
  • 21.4. Market assessment
  • 21.5. Global market in tons, historical and forecast to 2030
  • 21.6. Product developers

22. CARBON NANOMATERIALS IN FUEL CELLS

  • 22.1. Market overview
  • 22.2. Applications
  • 22.3. Market prospects
  • 22.4. Market assessment
  • 22.5. Global market in tons, historical and forecast to 2030
  • 22.6. Product developers

23. CARBON NANOMATERIALS IN LIFE SCIENCES AND MEDICINE

  • 23.1. Market overview
  • 23.2. Applications
  • 23.3. Market prospects
    • 23.3.1. Drug delivery
    • 23.3.2. Imaging and diagnostics
    • 23.3.3. Implants
    • 23.3.4. Medical biosensors
    • 23.3.5. Woundcare
  • 23.4. Market assessment
  • 23.5. Global market in tons, historical and forecast to 2030
  • 23.6. Product developers

24. CARBON NANOMATERIALS IN LIGHTING

  • 24.1. Market overview
  • 24.2. Applications
  • 24.3. Market prospects
  • 24.4. Market assessment
  • 24.5. Global market in tons, historical and forecast to 2030
  • 24.6. Product developers

25. CARBON NANOMATERIALS IN LUBRICANTS

  • 25.1. Market overview
  • 25.2. Applications
  • 25.3. Market prospects
  • 25.4. Market assessment
  • 25.5. Global market in tons, historical and forecast to 2030
  • 25.6. Product developers

26. CARBON NANOMATERIALS IN OIL AND GAS

  • 26.1. Market overview
  • 26.2. Applications
  • 26.3. Market prospects
  • 26.4. Market assessment
  • 26.5. Global market in tons, historical and forecast to 2030
  • 26.6. Product developers

27. CARBON NANOMATERIALS IN PAINTS AND COATINGS

  • 27.1. Market overview
  • 27.2. Applications
  • 27.3. Market prospects
  • 27.4. Market assessment
  • 27.5. Global market in tons, historical and forecast to 2030
  • 27.6. Product developers

28. CARBON NANOMATERIALS IN PHOTONICS

  • 28.1. Market overview
  • 28.2. Applications
  • 28.3. Market prospects
  • 28.4. Market assessment
  • 28.5. Global market in tons, historical and forecast to 2030
  • 28.6. Product developers

29. CARBON NANOMATERIALS IN PHOTOVOLTAICS

  • 29.1. Market overview
  • 29.2. Applications
  • 29.3. Market prospects
  • 29.4. Market assessment
  • 29.5. Global market in tons, historical and forecast to 2030
  • 29.6. Product developers

30. CARBON NANOMATERIALS IN RUBBER AND TIRES

  • 30.1. Market overview
  • 30.2. Applications
  • 30.3. Market prospects
  • 30.4. Market assessment
  • 30.5. Global market in tons, historical and forecast to 2030
  • 30.6. Product developers

31. CARBON NANOMATERIALS IN SENSORS

  • 31.1. Market overview
  • 31.2. Applications
  • 31.3. Market prospects
  • 31.4. Market assessment
  • 31.5. Global market in tons, historical and forecast to 2030
  • 31.6. Product developers

32. CARBON NANOMATERIALS IN SMART TEXTILES AND APPAREL

  • 32.1. Market overview
  • 32.2. Applications
  • 32.3. Market prospects
  • 32.4. Market assessment
  • 32.5. Global market in tons, historical and forecast to 2030
  • 32.6. Product developers

33. CARBON NANOMATERIALS IN SUPERCAPACITORS

  • 33.1. Market overview
  • 33.2. Applications
  • 33.3. Market prospects
  • 33.4. Market assessment
  • 33.5. Global market in tons, historical and forecast to 2030
  • 33.6. Product developers

34. OTHER MARKETS

  • 34.1. ELECTRONIC POLISHING MATERIALS
    • 34.1.1. Market prospects
    • 34.1.2. Market overview
    • 34.1.3. Market assessment
  • 34.2. COSMETICS
    • 34.2.1. Market prospects
    • 34.2.2. Market overview
    • 34.2.3. Market assessment
  • 34.3. CABLING
    • 34.3.1. Market assessment
  • 34.4. THERMAL INTERFACE MATERIALS
    • 34.4.1. Market assessment
  • 34.5. ANTI-STATIC PLASTIC PARTS
    • 34.5.1. Market assessment

35. GRAPHENE COMPANY PROFILES (236 COMPANY PROFILES)

36. MULTI-WALLED CARBON NANOTUBES COMPANY PROFILES (93 COMPANY PROFILES)

37. SINGLE-WALLED CARBON NANOTUBES COMPANY PROFILES (12 COMPANY PROFILES)

38. NANODIAMONDS COMPANY PROFILES (26 COMPANY PROFILES)

39. FULLERENES COMPANY PROFILES (40 COMPANY PROFILES)

40. OTHER 2-D MATERIALS

  • 40.1. BOROPHENE
    • 40.1.1. Properties
    • 40.1.2. Applications
  • 40.2. PHOSPHORENE
    • 40.2.1. Properties
    • 40.2.2. Applications
  • 40.3. GRAPHITIC CARBON NITRIDE (g-C3N4)
    • 40.3.1. Properties
    • 40.3.4. Applications
  • 40.4. GERMANENE
    • 40.4.1. Properties
    • 40.4.2. Applications
  • 40.5. GRAPHDIYNE
    • 40.5.1. Properties
    • 40.5.2. Applications
  • 40.6. GRAPHANE
    • 40.6.1. Properties
    • 40.6.2. Applications
  • 40.7. HEXAGONAL BORON-NITRIDE
    • 40.7.1. Properties
    • 40.7.2. Applications
  • 40.8. MOLYBDENUM DISULFIDE (MoS2)
    • 40.8.1. Properties
    • 40.8.2. Applications
  • 40.9. RHENIUM DISULFIDE (ReS2) AND DISELENIDE (ReSe2)
    • 40.9.1. Properties
    • 40.9.2. Applications
  • 40.10. SILICENE
    • 40.10.1. Properties
    • 40.10.2. Applications
  • 40.11. STANENE/TINENE
    • 40.11.1. Properties
    • 40.11.2. Applications
  • 40.12. TUNGSTEN DISELENIDE
    • 40.12.1. Properties
    • 40.12.2. Applications
  • 40.13. ANTIMONENE
    • 40.13.1. Properties
    • 40.13.2. Applications
  • 40.14. DIAMENE
    • 40.14.1. Properties
    • 40.14.2. Applications
  • 40.15. INDIUM SELENIDE
    • 40.15.1. Properties
    • 40.15.2. Applications
  • 40.16. COMPARATIVE ANALYSIS OF GRAPHENE AND OTHER 2D MATERIALS

41. RESEARCH METHODOLOGY

42. REFERENCES