株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

ナノテキスタイルの世界市場

The Global Market for Nanotextiles

発行 Future Markets, Inc. 商品コード 902992
出版日 ページ情報 英文 152 Pages
即納可能
価格
本日の銀行送金レート: 1GBP=147.30円で換算しております。
Back to Top
ナノテキスタイルの世界市場 The Global Market for Nanotextiles
出版日: 2019年07月30日 ページ情報: 英文 152 Pages
概要

当レポートでは、世界のナノテキスタイル市場について調査し、ナノテキスタイルの様々な市場と用途、ナノテキスタイルで使用されるナノマテリアル、市場成長の促進要因と動向、業界のコラボレーションとライセンス合意、世界のナノテキスタイル市場における用途・ナノマテリアル種類別の収益、テキスタイルにおけるナノマテリアルのメリット、ナノテキスタイルの市場課題と技術課題、近年の商業活動などについて分析し、主要企業のプロファイルを提供しています。

第1章 調査手法

第2章 エグゼクティブサマリー

第3章 ナノテキスタイル市場

  • スマートテキスタイル
  • ウェアラブルエレクトロニクス
  • 導電性インク
  • アパレル・スポーツウェア
  • フットウェア
  • 医療用テキスタイル・ウェアラブル
  • テキスタイル向けプリンテッドバッテリー
  • ソーラーエネルギーハーベスティングテキスタイル

第4章 ナノテキスタイルにおけるグラフェン

  • 用途
  • アパレル・スポーツウェア
  • フットウェア
  • 工業用テキスタイル
  • 電子テキスタイル/ウェアラブル
  • 導電性インク

第5章 ナノテキスタイルにおけるカーボンナノチューブ

  • 多層ナノチューブ (MWCNT)
  • 単層ナノチューブ (SWCNT)
  • アプリケーション
  • 帯電防止テキスタイル
  • ウェアラブルにおけるSWNCTS

第6章 ナノテキスタイルにおけるナノセルロース

  • セルロースナノファイバー (CNF)
  • ナノセルロースのメリット
  • セルロースナノ結晶 (CNC)
  • サニタリー製品
  • 衛生・吸収性製品
  • ウェアラブルエレクトロニクス

第7章 ナノテキスタイルにおけるナノファイバー

  • 用途
  • プロテクティブテキスタイル
  • Eテキスタイル

第8章 ナノテキスタイルにおけるナノシルバー

  • 抗菌テキスタイル
  • 導電性テキスタイルにおけるシルバーナノワイヤー

第9章 ナノテキスタイルにおけるナノコーティング

  • テキスタイルにおけるナノコーティングの種類
  • テキスタイルにおける抗菌ナノコーティング
  • テキスタイルにおける自己洗浄ナノコーティング
  • 疎油性・全疎性コーティングおよび表面
  • テキスタイルにおける紫外線抵抗性ナノコーティング
  • プロテクティブテキスタイル

第10章 ナノテキスタイル企業のプロファイル (78社)

第11章 参考文献

図表

Tables

  • Table 1. Categorization of nanomaterials
  • Table 2. Desirable functional properties for the textiles industry afforded by the use of nanomaterials
  • Table 3. Applications in textiles, by nanomaterials type and benefits thereof
  • Table 4. Global market for nanotextiles, 2018-2030, by application, Millions USD
  • Table 5. Global market for nanotextiles, 2018-2030, by nanomaterials, Millions USD
  • Table 6. Types of smart textiles
  • Table 7. Examples of smart textile products
  • Table 8. Currently available technologies for smart textiles
  • Table 9. Applications in textiles, by advanced materials type and benefits thereof
  • Table 10. Applications in printable, flexible, stretchable and organic sensors, by advanced materials type and benefits thereof
  • Table 11. Typical conductive ink formulation
  • Table 12. Comparative properties of conductive inks
  • Table 13. Applications in conductive inks by type and benefits thereof
  • Table 15. Applications in flexible and stretchable health monitors, by advanced materials type and benefits thereof
  • Table 16. Applications in patch-type skin sensors, by materials type and benefits thereof
  • Table 17. Applications in flexible and stretchable batteries, by nanomaterials type and benefits thereof
  • Table 18. Properties of graphene
  • Table 19. Applications and benefits of graphene in textiles and apparel
  • Table 20. Graphene apparel product developers
  • Table 21. Graphene footwear product developers
  • Table 22. Graphene industrial textiles product developers
  • Table 23. Graphene conductive yarns product developers
  • Table 24. Applications in flexible and stretchable batteries, by nanomaterials type and benefits thereof
  • Table 25. Graphene electronic textiles product developers
  • Table 26. Typical properties of SWCNT and MWCNT
  • Table 27. Comparison of carbon-based additives in terms of the main parameters influencing their value proposition as a conductive additive
  • Table 28. Applications and benefits of carbon nanotubes (CNTs) in textiles and apparel
  • Table 29. Properties of CNTs and comparable materials
  • Table 30. Types of nanocellulose
  • Table 31. Properties and applications of CNF
  • Table 32. CNC properties
  • Table 33. Properties of flexible electronics-cellulose nanofiber film (nanopaper)
  • Table 34. Nanofibers types, properties and applications
  • Table 35. Nanocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications
  • Table 36. Nanomaterials utilized in Anti-bacterial coatings-benefits and applications
  • Table 37. Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces
  • Table 38. Disadvantages of commonly utilized superhydrophobic coating methods

Figures

  • Figure 1. Polyera Wove Band
  • Figure 2. Global market for nanotextiles, 2018-2030, by application, Millions USD
  • Figure 3. Global market for nanotextiles, 2018-2030, by nanomaterials, Millions USD
  • Figure 4. Evolution of electronics
  • Figure 5: Panasonic CNT stretchable Resin Film
  • Figure 6. Wearable gas sensor
  • Figure 7. BeBop Sensors Smart Helmet Sensor System
  • Figure 8. Torso and Extremities Protection (TEP) system
  • Figure 9. Ralph Lauren Jacket incorporating printed heating elements
  • Figure 10. Connected human body
  • Figure 11. Graphene-based E-skin patch
  • Figure 12. Wearable bio-fluid monitoring system for monitoring of hydration
  • Figure 14. Smart e-skin system comprising health-monitoring sensors, displays, and ultra flexible PLEDs
  • Figure 15. Graphene medical patch
  • Figure 16. TempTraQ wearable wireless thermometer
  • Figure 17. Mimo baby monitor
  • Figure 18. Nanowire skin hydration patch
  • Figure 19. Wearable sweat sensor
  • Figure 20. GraphWear wearable sweat sensor
  • Figure 21. Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper
  • Figure 22. Colmar graphene jacket
  • Figure 23. Inov 8 graphene footwear
  • Figure 24. Smartphone app integration with BonBouton graphene sensor technology
  • Figure 25. Graphene geotextile installation
  • Figure 26. Foldable graphene E-paper
  • Figure 27. Conductive yarns
  • Figure 28. Stretchable graphene supercapacitor
  • Figure 29. Textiles covered in conductive graphene ink
  • Figure 30. Types of single-walled carbon nanotubes
  • Figure 31. Formation of a protective CNT-based char layer during combustion of a CNT-modified coating
  • Figure 32. Anti-static textile product incorporating SWCNTs
  • Figure 33. Schematic illustration of the SWCNT-based electronic devices as a wearable array platform, which consists of memory units, capacitors, and logic circuits (left)
  • Figure 34. Stretchable SWNT memory and logic devices for wearable electronics
  • Figure 35. Stretchable carbon aerogel incorporating carbon nanotubes
  • Figure 36. Scale of cellulose materials
  • Figure 37. TEM image of cellulose nanocrystals
  • Figure 38. An iridescent biomimetic cellulose multilayer film remains after water that contains cellulose nanocrystals evaporates
  • Figure 39. CNF deoderant products
  • Figure 40. NFC computer chip
  • Figure 41. Cellulose nanofiber films
  • Figure 42. (hitoe) nanofiber conductive shirt original design(top) and current design (bottom)
  • Figure 43. Anti-bacterials mechanism of silver nanoparticle coating
  • Figure 44. Silver nanocomposite ink after sintering and resin bonding of discrete electronic components
  • Figure 45. Flexible silver nanowire wearable mesh
  • Figure 46. Mechanism of microbial inactivation and degradation with anti-microbial PhotoProtect nanocoatings
  • Figure 47. (a) Water drops on a lotus leaf. (b) Scanning Electron Microscope (SEM) image of the upper leaf side prepared by ‘glycerol substitution' shows the hierarchical surface structure consisting of papillae, wax clusters and wax tubules. (c) Wax tubules on the upper leaf side
  • Figure 48. A schematic of (a) water droplet on normal hydrophobic surface with contact angle greater than 90° and (b) water droplet on a superhydrophobic surface with a contact angle > 150°
  • Figure 49. Contact angle on superhydrophobic coated surface
  • Figure 50. Omniphobic coatings
  • Figure 51. SLIPS repellent coatings
  • Figure 52. Omniphobic-coated fabric
目次

The Market for Nanotextiles broadly encompasses:

  • Nanocoated/finished textiles (e.g. anti-bacterial nanocoatings, self-cleaning, flame retardant nanoclays). Most nano-enabled textiles on the market fall into this category.
  • Nanocomposite textiles fibre materials (e.g. CNTs integrated into manufacture for enhanced strength; smart textiles with sensor elements; conductive textiles; shape memory textiles).
  • Nanofiber textiles (electrospun nanofibers for protection, conductivity etc.)
  • Nano-based non-wovens (e.g. barrier nanofilm integrated in layers).
  • E-textiles/wearable electronics incorporating nanomaterials.

The development of high value-added products such as smart fabrics, wearable consumer and medical devices and protective textiles has increased rapidly in the last decade. Recent advances in stimuli-responsive surfaces and interfaces, sensors and actuators, flexible electronics, nanocoatings and conductive nanomaterials has led to the development of a new generation of smart and adaptive electronic fibers, yarns and fabrics for application in E-textiles.

Report contents include:

  • Markets and applications of nanotextiles including wearable electronics, E-textiles, apparel, sportswear, footwear, medical textiles and industrial textiles.
  • Nanomaterials utilized in nanotextiles including graphene, carbon nanotubes, nanocellulose, metal oxide nanomaterials, nanosilver, nanofibers and nanocoatings.
  • Market drivers and trends
  • Nanotextles industrial collaborations and licence agreements
  • Global market revenues for nanotextiles to 2030 by applications and nanomaterials types.
  • Advantages of nanomaterials in textiles.
  • Market and technical challenges for nanotextiles.
  • Recent commercial activity.
  • 78 nanotextiles producer profiles.

Table of Contents

1. RESEARCH METHODOLOGY

  • 1.1. Market definition
  • 1.2. Methodology
  • 1.3. Properties of nanomaterials

2. EXECUTIVE SUMMARY

  • 2.1. NANOMATERIALS IN TEXTILES
    • 2.1.1. Recent growth
    • 2.1.2. Future growth
    • 2.1.3. Nanotechnology as a market driver
    • 2.1.4. From rigid to flexible and stretchable
  • 2.2. MARKET DRIVERS AND TRENDS
    • 2.2.1. Reduction in size, appearance and cost of sensors for wearables
    • 2.2.2. Growth in the wearable electronics market
    • 2.2.3. Need for improved conductivity
    • 2.2.4. Growth in remote health monitoring and diagnostics
    • 2.2.5. Need for flexible and stretchable advanced materials
    • 2.2.6. Need for thermal management materials
    • 2.2.7. Growth in the market for anti-microbial textiles
    • 2.2.8. Need to improve the properties of cloth or fabric materials
    • 2.2.9. Environmental and regulatory
    • 2.2.10. Increase in demand for UV protection textiles and apparel
    • 2.2.11. Need for biodegradable sanitary products
    • 2.2.12. Increasing demand for smart fitness clothing
  • 2.3. MARKET CHALLENGES
  • 2.4. GLOBAL MARKETS FOR NANOTEXTILES, BY NANOMATERIALS AND APPLICATIONS

3. MARKETS FOR NANOTEXTILES

  • 3.1. Smart textiles
  • 3.2. Wearable electronics
    • 3.2.1. Wearable sensors
    • 3.2.2. Wearable gas sensors
    • 3.2.3. Wearable strain sensors
    • 3.2.4. Wearable tactile sensors
    • 3.2.5. Industrial monitoring
    • 3.2.6. Military
  • 3.3. Conductive inks
    • 3.3.1. Nanoparticle ink
    • 3.3.2. Conductive Filaments
    • 3.3.3. Conductive films, foils and grids
    • 3.3.4. Inkjet printing in flexible electronics
    • 3.3.5. Printed heaters
  • 3.4. Apparel and sportswear
  • 3.5. Footwear
  • 3.6. Medical textiles and wearables
    • 3.6.1. Nanomaterials-based devices
    • 3.6.2. Printable, flexible and stretchable health monitors
      • 3.6.2.1. Patch-type skin sensors
      • 3.6.2.2. Skin temperature monitoring
      • 3.6.2.3. Hydration sensors
      • 3.6.2.4. Wearable sweat sensors
  • 3.7. Printed batteries for textiles
  • 3.8. Solar energy harvesting textiles

4. GRAPHENE IN NANOTEXTILES

  • 4.1. Applications
  • 4.2. Apparel and sportswear
  • 4.3. Footwear
  • 4.4. Industrial textiles
  • 4.5. Electronic textiles/wearables
    • 4.5.1. Conductive yarns
      • 4.5.1.1. Flexible graphene batteries
  • 4.6. Conductive coatings

5. CARBON NANOTUBES IN NANOTEXTILES

  • 5.1. Multi-walled nanotubes (MWCNT)
    • 5.1.1. Properties
  • 5.2. Single-walled nanotubes (SWCNT)
  • 5.3. Applications
    • 5.3.1. Flame retardant coatings
  • 5.4. Anti-static textiles
  • 5.5. SWNCTS in wearables

6. NANOCELLULOSE IN NANOTEXTILES

  • 6.1. Cellulose nanofibers (CNF)
  • 6.2. Advantages of nanocellulose
  • 6.3. Cellulose nanocrystals (CNC)
  • 6.4. Sanitary products
  • 6.5. Hygiene and absorbent products
  • 6.6. Wearable electronics

7. NANOFIBERS IN NANOTEXTILES

  • 7.1. Applications
  • 7.2. Protective textiles
  • 7.3. E-textiles

8. NANOSILVER IN NANOTEXTILES

  • 8.1. Anti-bacterial textiles and wound dressings
  • 8.2. Silver nanowires in conductive textiles
    • 8.2.1. Silver flake
    • 8.2.2. Silver (Ag) nanoparticle ink
      • 8.2.2.1. Conductivity
    • 8.2.3. Silver nanowires

9. NANOCOATINGS IN NANOTEXTILES

  • 9.1. Types of nanocoatings in textiles
  • 9.2. Anti-bacterial nanocoatings in textiles
  • 9.3. Self-cleaning nanocoatings in textiles
    • 9.3.1. Hydrophilic coatings
    • 9.3.2. Hydrophobic coatings
      • 9.3.2.1. Properties
    • 9.3.3. Superhydrophobic coatings and surfaces
      • 9.3.3.1. Properties
  • 9.4. Oleophobic and omniphobic coatings and surfaces
    • 9.4.1. SLIPS
  • 9.5. UV-resistant nanocoatings in textiles
  • 9.6. Protective textiles

10. NANOTEXTILES COMPANY PROFILES (78 COMPANY PROFILES)

11. REFERENCES

Back to Top