株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

メタマテリアルの世界市場の分析・予測

The Global Market for Metamaterials to 2030

発行 Future Markets, Inc. 商品コード 721682
出版日 ページ情報 英文 110 Pages
即納可能
価格
本日の銀行送金レート: 1GBP=142.97円で換算しております。
Back to Top
メタマテリアルの世界市場の分析・予測 The Global Market for Metamaterials to 2030
出版日: 2019年04月23日 ページ情報: 英文 110 Pages
概要

当レポートでは、世界のメタマテリアルの市場を調査し、メタマテリアルの定義と概要、市場の発展の経緯、投資・資金調達の動向、各種タイプ、エンドユーズ産業別の主要動向・用途・市場影響因子の分析・収益の推移と予測、主要企業のプロファイルなどをまとめています。

第1章 イントロダクション

第2章 調査手法

第3章 エグゼクティブサマリー

  • メタマテリアル市場の発展の経緯
  • 近年の成長
  • 市場収益の現状・予測
  • 地域分析
  • 市場機会の分析
  • 投資・資金調達
  • 将来の展望
  • 市場・技術の課題

第4章 メタマテリアル:概要

  • メタマテリアルとは
  • メタマテリアルの各種タイプ
    • 電磁メタマテリアル
    • テラヘルツメタマテリアル
    • フォトニックメタマテリアル
    • チューナブルメタマテリアル
    • 周波数選択面 (FSS) メタマテリアル
    • ノンリニアメタマテリアル
    • 音響メタマテリアル

第5章 メタマテリアル市場の分析・予測:産業・用途別

  • 音響
    • 成長推進因子・動向
    • 用途
    • 市場分析・成長の見通し・収益推計
  • 通信
    • 成長推進因子・動向
    • 用途
    • 市場分析・成長の見通し・収益推計
  • 自動車
    • 成長推進因子・動向
    • 用途
    • 市場分析・成長の見通し・収益推計
  • 航空宇宙・防衛・セキュリティ
    • 成長推進因子・動向
    • 用途
    • 市場分析・成長の見通し・収益推計
  • コーティング剤・フィルム
    • 成長推進因子・動向
    • 用途
    • 市場分析・成長の見通し・収益推計
  • 太陽光
    • 成長推進因子・動向
    • 用途
    • 収益予測
  • 医用画像
    • 成長推進因子・動向
    • 用途
    • 収益予測
  • タッチスクリーン・ディスプレイ
    • 成長推進因子・動向
    • 用途

第6章 企業プロファイル

  • Acoustic Metamaterials Group Ltd
  • AEgis Technologies Group, Inc.
  • Echodyne, Inc.
  • Evolv Technology, Inc.
  • EM Infinity
  • Fractal Antenna Systems, INc.
  • Imuzak Co., Ltd.
  • Kymeta Corporation
  • Magment AG
  • Metaboards Limited
  • Metamagnetics, Inc.
  • Metamaterial Technologies, Inc
  • MetaShield LLC
  • Metasonics
  • Metawave
  • Multiwave Technologies AG
  • Nanohmics Inc
  • NKT Photonics A/S
  • PARC
  • Phoebus Optoelectronics LLC
  • Pixie Dust Technologies, Inc.
  • Pivotal Commware, INc.
  • Protemics GmbH
  • Radi-Cool, INc.
  • Sonobex Ltd.
  • Specom Oy
  • Plasmonics, Inc.

第7章 文献

目次

Metamaterials are artificially engineered structures with exceptional material properties (acoustic, electrical, magnetic, optical, etc.). They comprise arrays of resonators that manipulate electromagnetic waves or sound in ways not normally found in nature.

Possessing customized dielectric properties and tunable responses they allow for excellent flexibility in a range of applications, their use enabling the manipulation of fields and waves at a subwavelength scale.

Initial R&D in metamaterials has focused on cloaking and light manipulation, but the last few years has seen applications development in:

  • telecommunications
  • acoustics
  • sensors
  • radar imaging
  • optics (terahertz and infrared)
  • coatings & films
  • lidar systems for self-driving cars
  • medical imaging.

There are now over 25 metamaterials product developers worldwide, who have received >$300 million in recent investment as the metamaterials market picks up again after a sluggish few years.

Report contents include:

  • Description of the global metamaterials market in 2018.
  • Global revenue estimates to 2030 by markets.
  • Stage of commercialization for metamaterials applications, from basic research to market entry.
  • Market drivers, trends and challenges, by end user markets.
  • Competitive landscape.
  • In-depth market assessment of opportunities for metamaterials.
  • In-depth profiles of 28 companies, including products, investments, partnerships and commercial activities.
  • Detailed forecasts for key growth areas, opportunities and user demand.
  • Demand by region.

Markets targeted, by product developers and end users.

Table of Contents

1. INTRODUCTION

  • 1.1. Aims and objectives of the study
  • 1.2. Market opportunity analysis

2. RESEARCH METHODOLOGY

3. EXECUTIVE SUMMARY

  • 3.1. Historical metamaterials market
  • 3.2. Recent growth
  • 3.3. Market revenues, current and forecast
  • 3.4. Regional analysis
  • 3.5. Market opportunity assessment
  • 3.6. Investment funding in metamaterials
  • 3.7. Future perspectives and prospects
  • 3.8. Market and technology challenges

4. METAMATERIALS OVERVIEW

  • 4.1. What are metamaterials?
    • 4.1.1. Metasurfaces
  • 4.2. Types of metamaterials
    • 4.2.1. Electromagnetic metamaterials
      • 4.2.1.1. Double negative (DNG) metamaterials
      • 4.2.1.2. Single negative metamaterials
      • 4.2.1.3. Electromagnetic bandgap metamaterials (EBG)
      • 4.2.1.4. Bi-isotropic and bianisotropic metamaterials
      • 4.2.1.5. Chiral metamaterials
    • 4.2.2. Terahertz metamaterials
    • 4.2.3. Photonic metamaterials
    • 4.2.4. Tunable metamaterials
    • 4.2.5. Frequency selective surface (FSS) based metamaterials
    • 4.2.6. Nonlinear metamaterials
    • 4.2.7. Acoustic metamaterials

5. MARKETS AND APPLICATIONS FOR METAMATERIALS

  • 5.1. Global revenues for metamaterials, by market, 2017-2030 (Millions USD)
  • 5.2. ACOUSTICS
    • 5.2.1. Market drivers and trends
    • 5.2.2. Applications
      • 5.2.2.1. Sound insulation
    • 5.2.3. Market assessment, growth prospects and revenue estimates
      • 5.2.3.1. Global revenues for metamaterials in acoustics, 2017-2030
  • 5.3. COMMUNICATIONS
    • 5.3.1. Market drivers and trends
    • 5.3.2. Applications
      • 5.3.2.1. Antennas
      • 5.3.2.2. Thermal management
      • 5.3.2.3. Wireless charging
      • 5.3.2.4. Mobile communications in transport
    • 5.3.3. Market assessment, growth prospects and revenue estimates
      • 5.3.3.1. Global revenues for metamaterials in communications, 2017-2030
  • 5.4. AUTOMOTIVE
    • 5.4.1. Market drivers and trends
    • 5.4.2. Applications
      • 5.4.2.1. Radar and sensors
      • 5.4.2.2. Self-driving vehicles
      • 5.4.2.3. Anti-reflective plastics
    • 5.4.3. Market assessment, growth prospects and revenue estimates
      • 5.4.3.1. Global revenues for metamaterials in automotive, 2017-2030
  • 5.5. AEROSPACE, DEFENCE & SECURITY
    • 5.5.1. Market drivers and trends
    • 5.5.2. Applications
      • 5.5.2.1. Stealth technology
      • 5.5.2.2. Radar
      • 5.5.2.3. Optical sensors
      • 5.5.2.4. Security screening
      • 5.5.2.5. Composites
      • 5.5.2.6. Windscreen films
      • 5.5.2.7. Electromagnetic shielding
      • 5.5.2.8. Thermal management
    • 5.5.3. Market assessment, growth prospects and revenue estimates
      • 5.5.3.1. Global revenues for metamaterials in aerospace, defence and security 2017-2030
  • 5.6. COATINGS AND FILMS
    • 5.6.1. Market drivers and trends
    • 5.6.2. Applications
      • 5.6.2.1. Cooling films
      • 5.6.2.2. Anti-reflection surfaces
      • 5.6.2.3. Optical solar reflection coatings
    • 5.6.3. Market assessment, growth prospects and revenue estimates
      • 5.6.3.1. Global revenues for metamaterials in coatings and films, 2017-2030
  • 5.7. SOLAR
    • 5.7.1. Market drivers and trends
    • 5.7.2. Applications
    • 5.7.3. Global revenues for metamaterials in solar, 2017-2030
  • 5.8. MEDICAL IMAGING
    • 5.8.1. Market drivers and trends
    • 5.8.2. Applications
      • 5.8.2.1. Radiation detectors
    • 5.8.3. Global revenues for metamaterials in medical imaging, 2017-2030
  • 5.9. TOUCH SCREENS AND DISPLAYS
    • 5.9.1. Market drivers and trends
    • 5.9.2. Applications
      • 5.9.2.1. Stretchable displays
      • 5.9.2.2. Soft materials

6. METAMATERIALS COMPANY PROFILES(28 company profiles)

7. REFERENCES

Tables

  • Table 1. Market summary for metamaterials
  • Table 2. Global revenues for metamaterials, total, 2017-2030 (Millions USD)
  • Table 3. Global revenues for metamaterials, by region, 2017-2030 (Millions USD)
  • Table 4. Market opportunity assessment matrix for metamaterials applications
  • Table 5. Investment funding in metamaterials companies
  • Table 6. Market and technology challenges in metamaterials
  • Table 7. Global revenues for metamaterials, by market, 2017-2030 (Millions USD)
  • Table 8: Metamaterials in sound insulation-market drivers and trends
  • Table 9. Market assessment for metamaterials in acoustics
  • Table 10. Market opportunity assessment for metamaterials in acoustics
  • Table 11. Global revenues for metamaterials in acoustics, 2017-2030 (Millions USD)
  • Table 12: Metamaterials in communications-market drivers and trends
  • Table 13. Unmet need, metamaterial solution and markets
  • Table 14. Market assessment for metamaterials in communications
  • Table 15. Market opportunity assessment for metamaterials in communications
  • Table 16. Global revenues for metamaterials in communications, 2017-2030 (Millions USD)
  • Table 17: Metamaterials in the automotive sector-market drivers and trends
  • Table 18. Market assessment for metamaterials in automotive
  • Table 19. Market opportunity assessment for metamaterials in automotive
  • Table 20. Global revenues for metamaterials in automotive, 2017-2030 (Millions USD)
  • Table 21: Metamaterials in aerospace, defence and security-market drivers and trends
  • Table 22. Market assessment for metamaterials in aerospace, defence & security
  • Table 23. Market opportunity assessment for metamaterials in aerospace, defence & security
  • Table 24. Global revenues for metamaterials in communications, 2017-2030 (Millions USD)
  • Table 25: Metamaterials in coatings and films-market drivers and trends
  • Table 26. Market assessment for metamaterials in coatings and films
  • Table 27. Market opportunity assessment for metamaterials in coatings and films
  • Table 28. Global revenues for metamaterials in coatings and films, 2017-2030 (Millions USD)
  • Table 29: Metamaterials in solar-market drivers and trends
  • Table 30. Global revenues for metamaterials in solar, 2017-2030 (Millions USD)
  • Table 31: Metamaterials in medical imaging-drivers and trends
  • Table 32. Global revenues for metamaterials in medical imaging, 2017-2030 (Millions USD)
  • Table 33: Metamaterials in touch screens and displays-drivers and trends

Figures

  • Figure 1. Global revenues for metamaterials, total, 2017-2030 (Millions USD)
  • Figure 2. Global revenues for metamaterials, by region, 2017-2030 (Millions USD)
  • Figure 3. Metamaterials commercialization roadmap
  • Figure 4: Technology Readiness Level (TRL) for metamaterials
  • Figure 5. Metamaterials example structures
  • Figure 6. Metamaterial schematic versus conventional materials
  • Figure 7. Electromagnetic metamaterial
  • Figure 8. Schematic of Electromagnetic Band Gap (EBG) structure
  • Figure 9. Schematic of chiral metamaterials
  • Figure 10. Terahertz metamaterials
  • Figure 11. Nonlinear metamaterials- 400-nm thick nonlinear mirror that reflects frequency-doubled output using input light intensity as small as that of a laser pointer
  • Figure 12. Global revenues for metamaterials, by market, 2017-2030 (Millions USD)
  • Figure 13. Prototype metamaterial device used in acoustic sound insulation
  • Figure 14. Metamaterials installed in HVAC sound insulation the Hotel Madera Hong Kong
  • Figure 15. Global revenues for metamaterials in acoustics, 2017-2030 (Millions USD)
  • Figure 16. Wireless charging technology prototype
  • Figure 17. Flat-panel satellite antenna (top) and antenna mounted on a vehicle (bottom)
  • Figure 18. Global revenues for metamaterials in communications, 2017-2030 (Millions USD)
  • Figure 19. Metamaterials in automotive applications
  • Figure 20. Anti-reflective metamaterials plastic
  • Figure 21. Global revenues for metamaterials in automotive, 2017-2030 (Millions USD)
  • Figure 22. Metamaterials invisibility cloak for microwave frequencies
  • Figure 23. Metamaterials radar antenna
  • Figure 24. Metamaterials radar array
  • Figure 25. Evolv Edge visitor screening solution
  • Figure 26. Lightweight metamaterial microlattice
  • Figure 27. metaAIR eyewear
  • Figure 28. Global revenues for metamaterials in aerospace, defence & security, 2017-2030 (Millions USD)
  • Figure 29. Schematic of dry-cooling technology
  • Figure 30. Global revenues for metamaterials in coatings and films, 2017-2030 (Millions USD)
  • Figure 31. Global revenues for metamaterials in solar, 2017-2030 (Millions USD)
  • Figure 32. A patient in MRI scan modified by metasurface
  • Figure 33. Global revenues for metamaterials in medical imaging, 2017-2030 (Millions USD)
  • Figure 34. Stretchable hologram
  • Figure 35. Design concepts of soft mechanical metamaterials with large negative swelling ratios and tunable stress-strain curves
  • Figure 36. Schematic of MESA System
  • Figure 37. FM/R technology
  • Figure 38. LIDAR system for autonomous vehicles
  • Figure 39. Metamaterials film
  • Figure 40. Metamaterial structure used to control thermal emission
Back to Top