メールサービス キャンペーン : 期間中に新規登録や配信希望カテゴリの変更等をされた方に、ご用意した無料レポートを提供しております。 新規登録 / 登録内容変更

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

プリンタブル、フレキシブルおよびストレッチャブルセンサー・エレクトロニクスの世界市場

The Global Market for Printable, Flexible and Stretchable Sensors and Electronics 2018-2027

発行 Future Markets, Inc. 商品コード 485663
出版日 ページ情報 英文 375 Pages
即納可能
価格
本日の銀行送金レート: 1GBP=144.83円で換算しております。
Back to Top
プリンタブル、フレキシブルおよびストレッチャブルセンサー・エレクトロニクスの世界市場 The Global Market for Printable, Flexible and Stretchable Sensors and Electronics 2018-2027
出版日: 2018年03月31日 ページ情報: 英文 375 Pages
概要

当レポートでは、世界のプリンタブル、フレキシブルおよびストレッチャブル (PFS) センサーおよびエレクトロニクス市場について調査し、現在・将来の製品、PFSセンサー・エレクトロニクス向け先進マテリアル、アプリケーションの商業化段階、市場成長促進因子と動向、マテリアル・アプリケーション別による市場収益、および企業プロファイルなど、体系的な情報を提供しています。

第1章 エグゼクティブサマリー

第2章 調査手法

第3章 プリンタブル、フレキシブルおよびストレッチャブルエレクトロニクスマテリアル・複合材料

  • カーボンナノチューブ
  • 導電性ポリマー (CP)
  • グラフェン
  • 金属メッシュ
  • 金属ナノワイヤー
  • ナノセルロース
  • ナノファイバー
  • 量子ドット
  • グラフェン・カーボン量子ドット
  • その他の2Dマテリアル

第4章 プリンタブル、フレキシブルおよびストレッチャブル導電性インク

  • 市場成長促進因子
  • アプリケーション
    • 現在の製品
    • 先進マテリアルソリューション
    • RFID
    • スマートラベル
    • プリンタブルセンサー
    • プリンテッドバッテリー
    • プリンタブルアンテナ
    • インモールドエレクトロニクス
    • プリントトランジスタ
    • 薄膜スイッチ
  • 世界市場規模
  • 企業プロファイル

第5章 ウェアラブルエレクトロニクスおよびIoT向けプリンタブル、フレキシブルおよびストレッチャブルセンサー

  • 市場成長促進因子
  • アプリケーション
    • 現在の技術水準
    • 先進マテリアルソリューション
    • 透明導電性フィルム
    • ウェアラブルセンサー
  • 世界市場規模
  • 企業プロファイル

第6章 プリンタブル、フレキシブルおよびストレッチャブル医療用・ヘルスケア用センサー・ウェアラブル

  • 市場成長促進因子
  • アプリケーション
    • 現在の技術水準
    • 先進マテリアルソリューション
    • プリンタブル、フレキシブルおよびストレッチャブルヘルスモニター
  • 世界市場規模
  • 企業プロファイル

第7章 プリンタブル、フレキシブルおよびストレッチャブル電子衣料品

  • 市場成長促進因子
  • アプリケーション
    • 現在の技術水準
    • 先進マテリアルソリューション
    • 導電性糸
    • 導電性コーティング
  • 世界市場規模
  • 企業プロファイル

第8章 プリンタブル、フレキシブルおよびストレッチャブルエネルギーストレージ・コンバージョン

  • 市場成長促進因子
  • アプリケーション
    • 現在の技術水準
    • 先進マテリアルソリューション
  • 世界市場規模
  • 企業プロファイル

第9章 プリンタブル、フレキシブルおよびストレッチャブルディスプレイ・電子コンポーネント

  • 市場成長促進因子
  • アプリケーション
    • プリンタブル、フレキシブルおよびストレッチャブル回路基板・インターコネクト
    • プリンタブル、フレキシブルおよびストレッチャブルトランジスター
    • フレキシブルディスプレイ
  • 世界市場規模
  • 企業プロファイル
目次

“An excellent report on the printable and flexible electronics market.” Florian Theisen, Heraeus.

Based on a new generation of advanced materials, printed, flexible and stretchable sensors and electronics will enable new possibilities in a diverse range of industries from healthcare to automotive to buildings. These technologies will drive innovation in smart medical technology, automotive, smart manufacturing, Internet of Things (IoT) and consumer electronics.

The recent growth of the Internet of Things (IoT) and wearables has created the need for electronics and sensor systems that are small, lightweight, mechanically flexible and low-power. These systems must also be able to conform to the shape of and survive the environment in which they must operate. They are typically fabricated on flexible plastic substrates or are printed/woven into fabrics. Applications covered in this report include:

Electronic components and displays

  • Multilayer printing of circuitry.
  • Large-area electronic-based sensors for Internet of Things (IoT)
  • Organic-semiconductor based circuits.
  • Highly stretchable large-area sensors.
  • Large-area flexible electronic devices.
  • Inkjet-printed stretchable electrodes.
  • Stretchable, biocompatible and biodegradable substrates.
  • Wireless sensors and networks.
  • Structural monitoring.

Energy harvesting and storage

  • RF, piezo and thermal harvesting.
  • Flexible PV cells.
  • Printed PV cells.
  • Printed flexible energy harvesting devices.
  • OLED lighting.
  • Novel interconnects.
  • Printable batteries and supercapacitors.
  • Flexible thermoelectric devices.

Smart wearables

  • Smarter and lighter wearable consumer electronics.
  • Stretchable/ultra-flexible electronics.
  • Fitness monitoring.
  • Biosensors for sports.

Automotive

  • Integrated dashboards.
  • Flexible OLEDs.

Healthcare and medical

  • Health monitoring devices, including intelligent patches and bandages for medical treatments.
  • Flexible X-ray imaging.
  • On-body ECG monitoring.
  • Biosensors and electronics to interface biological tissue.
  • Artificial skins.
  • Printed and Flexible Sensors for Vital Signs Monitoring.

Development areas covered include:

  • New organic semiconducting materials for organic electronics.
  • Conductive inks for 2D and 3D printed devices.
  • Flexible IGZO backplanes.
  • Stretchable thermoformed inks.
  • OTFTs (organic thin-film transistors).
  • Solution processed polymer semiconductors for thin-film transistors.
  • Transparent conducting films (TCF) for touch sensors.
  • Organic thin film transistors (OTFT).
  • Organic photodetectors (OPD).
  • Nanomaterials based printed, flexible and stretchable electronics and applications.
  • Graphene for flexible electronics.
  • Flexible transparent conductive electrodes for Organic Devices.
  • Hybrid transparent conductors for deformable displays.

Report contents include:

  • Current and future printable, flexible and stretchable products.
  • Advanced materials used in printable, flexible and stretchable electronics and sensors.
  • Stage of commercialization for applications, from basic research to market entry. Markets covered include conductive inks, wearables and IoT, medical & healthcare sensors, electronic clothing & smart apparel, energy harvesting & storage, electronics components and flexible displays.
  • Market drivers and trends.
  • Market figures for conductive inks, by materials type and revenues to 2027.
  • Market figures for inkjetable conductive inks to 2027.
  • Global market revenues for wearable electronics to 2027.
  • Global transparent conductive electrodes market forecast by materials type.
  • Addressable market for smart textiles and wearables in medical and healthcare.
  • Global market for thin film, flexible and printed batteries to 2027.
  • Global smart clothing and apparel market revenues to 2027.
  • Global market for flexible OLED displays to 2027.
  • Over 270 in-depth company profiles.

Table of Contents

1. EXECUTIVE SUMMARY

  • 1.1. The evolution of electronics
    • 1.1.1. The wearables revolution
    • 1.1.2. Flexible, thin, and large-area form factors
  • 1.2. What are flexible and stretchable electronics?
    • 1.2.1. From rigid to flexible and stretchable
    • 1.2.2. Organic and printed electronics
    • 1.2.3. New conductive materials
  • 1.3. Growth in flexible and stetchable electronics market
    • 1.3.1. Recent growth in printable, flexible and stretchable products
    • 1.3.2. Future growth
    • 1.3.3. Nanotechnology as a market driver
    • 1.3.4. Growth in remote health monitoring and diagnostics

2. RESEARCH METHODOLOGY

3. PRINTABLE, FLEXIBLE AND STRETCHABLE ELECTRONIC MATERIALS AND COMPOSITES

  • 3.1. CARBON NANOTUBES
    • 3.1.1. Properties
    • 3.1.2. Properties utilized in printable, flexible and stretchable electronics
      • 3.1.2.1. Single-walled carbon nanotubes
    • 3.1.3. Applications in printable, flexible and stretchable electronics
    • 3.2.1. Properties
      • 3.2.1.1. PDMS
      • 3.2.1.2. PEDOT: PSS
    • 3.2.2. Properties utilized in printable, flexible and stretchable electronics
    • 3.2.3. Applications in printable, flexible and stretchable electronics
    • 3.3.1. Properties
    • 3.3.2. Properties utilized in printable, flexible and stretchable electronics
    • 3.3.3. Applications in printable, flexible and stretchable electronics
    • 3.4.1. Properties
    • 3.4.2. Properties utilized in printable, flexible and stretchable electronics
    • 3.4.3. Applications in printable, flexible and stretchable electronics
    • 3.5.1. Silver flake
    • 3.5.2. Silver micro particle ink
    • 3.5.3. Silver (Ag) nanoparticle ink
      • 3.5.3.1. Conductivity
      • 3.5.3.2. Flexible electronics
  • 3.2. CONDUCTIVE POLYMERS (CP)
  • 3.3. GRAPHENE
  • 3.4. METAL MESH
  • 3.5. SILVER INK (Flake, nanoparticles, nanowires, ion)
    • 3.5.4. Silver nanowires
    • 3.5.5. Prices
    • 3.6.1. Copper (Cu) nanoparticle ink
    • 3.6.2. Prices
    • 3.7.1. Properties
    • 3.7.2. Properties utilized in printable, flexible and stretchable electronics
    • 3.7.3. Applications in printable, flexible and stretchable electronics
      • 3.7.3.1. Nanopaper
      • 3.7.3.2. Paper memory
    • 3.8.1. Properties
    • 3.8.2. Properties utilized in printable, flexible and stretchable electronics
    • 3.8.3. Applications in printable, flexible and stretchable electronics
    • 3.9.1. Properties
    • 3.9.2. Properties utilized in printable, flexible and stretchable electronics
    • 3.9.3. Applications in printable, flexible and stretchable electronics
    • 3.10.1. Properties
  • 3.6. COPPER INK
  • 3.7. NANOCELLULOSE
  • 3.8. NANOFIBERS
  • 3.9. QUANTUM DOTS
  • 3.10. GRAPHENE AND CARBON QUANTUM DOTS
    • 3.10.2. Applications in printable, flexible and stretchable electronics
      • 3.11.1. Platinum (Pt) nanoparticle ink
      • 3.11.2. Gold (Au) nanoparticle ink
      • 3.11.3. Siloxane inks
      • 3.12.1. Black phosphorus/Phosphorene
      • 3.12.2. C2N
      • 3.12.3. Germanene
      • 3.12.4. Graphdiyne
      • 3.12.5. Graphane
      • 3.12.6. Boron nitride
      • 3.12.7. Molybdenum disulfide (MoS2)
      • 3.12.8. Rhenium disulfide (ReS2) and diselenide (ReSe2)
      • 3.12.9. Silicene
      • 3.12.10. Stanene/tinene
      • 3.12.11. Tungsten diselenide
  • 3.11. OTHER TYPES
  • 3.12. OTHER 2-D MATERIALS

4. PRINTABLE, FLEXIBLE AND STRETCHABLE CONDUCTIVE INKS

  • 4.1. MARKET DRIVERS
  • 4.2. CONDUCTIVE INK TYPES
  • 4.3. PRINTING METHODS
  • 4.4. INKJET PRINTING
  • 4.5. APPLICATIONS
    • 4.5.1. Current products
    • 4.5.2. Advanced materials solutions
    • 4.5.3. RFID
    • 4.5.4. Smart labels
    • 4.5.5. Smart clothing
    • 4.5.6. Printable sensors
    • 4.5.7. Printed batteries
    • 4.5.8. Printable antennas
    • 4.5.9. In-mold electronics
    • 4.5.10. Printed transistors
  • 4.6. GLOBAL MARKET SIZE
  • 4.7. COMPANY PROFILES (90 company profiles)

5. WEARABLE ELECTRONICS AND IOT

  • 5.1. MARKET DRIVERS
  • 5.2. APPLICATIONS
    • 5.2.1. Current state of the art
    • 5.2.2. Advanced materials solutions
    • 5.2.3. Transparent conductive films
      • 5.2.3.1. Carbon nanotubes (SWNT)
      • 5.2.3.2. Double-walled carbon nanotubes
      • 5.2.3.3. Graphene
      • 5.2.3.4. Silver nanowires
      • 5.2.3.5. Nanocellulose
      • 5.2.3.6. Copper nanowires
      • 5.2.3.7. Nanofibers
    • 5.2.4. Wearable sensors
      • 5.2.4.1. Current stage of the art
      • 5.2.4.2. Advanced materials solutions
      • 5.2.4.3. Wearable gas sensors
      • 5.2.4.4. Wearable strain sensors
      • 5.2.4.5. Wearable tactile sensors
      • 5.2.4.6. Industrial monitoring
      • 5.2.4.7. Military
    • 5.3.1. Transparent conductive electrodes
  • 5.3. GLOBAL MARKET SIZE
  • 5.4. COMPANY PROFILES (61 company profiles)

6. MEDICAL AND HEALTHCARE SENSORS AND WEARABLES

  • 6.1. MARKET DRIVERS
  • 6.2. APPLICATIONS
    • 6.2.1. Current state of the art
    • 6.2.2. Advanced materials solutions
      • 6.2.2.1. Minimally invasive interfaces
      • 6.2.2.2. Skin sensors
      • 6.2.2.3. Nanomaterials-based devices
    • 6.2.3. Printable, flexible and stretchable health monitors
      • 6.2.3.1. Patch-type skin sensors
      • 6.2.3.2. Skin temperature monitoring
      • 6.2.3.3. Hydration sensors
      • 6.2.3.4. Wearable sweat sensors
      • 6.2.3.5. UV patches
      • 6.2.3.6. Smart footwear
  • 6.3. GLOBAL MARKET SIZE
  • 6.4. COMPANY PROFILES (40 company profiles)

7. ELECTRONIC CLOTHING AND APPAREL

  • 7.1. MARKET DRIVERS
  • 7.2. APPLICATIONS
    • 7.2.1. Current state of the art
    • 7.2.2. Advanced materials solutions
    • 7.2.3. Conductive yarns
    • 7.2.4. Conductive coatings
    • 7.2.5. Smart helmets
  • 7.3. GLOBAL MARKET SIZE
  • 7.4. COMPANY PROFILES (34 company profiles)

8. ENERGY STORAGE AND CONVERSION

  • 8.1. MARKET DRIVERS
  • 8.2. APPLICATIONS
    • 8.2.1. Current state of the art
    • 8.2.2. Advanced materials solutions
      • 8.2.2.1. Flexible and stretchable batteries
      • 8.2.2.2. Flexible and stretchable supercapacitors
      • 8.2.2.3. Fiber-shaped Lithium-Ion batteries
      • 8.2.2.4. Flexible OLED lighting
      • 8.2.2.5. Quantum dot lighting
      • 8.2.2.6. Solar energy harvesting textiles
      • 8.2.2.7. Stretchable piezoelectric energy harvesting
      • 8.2.2.8. Stretchable triboelectric energy harvesting
  • 8.3. GLOBAL MARKET SIZE
  • 8.4. COMPANY PROFILES (18 company profiles)

9. DISPLAYS AND ELECTRONIC COMPONENTS

  • 9.1. MARKET DRIVERS
  • 9.2. APPLICATIONS
    • 9.2.1. Automotive
      • 9.2.1.1. Autonomous driving
    • 9.2.2. Printable, flexible and stretchable circuit boards and interconnects
    • 9.2.3. Printable, flexible and stretchable transistors
    • 9.2.4. Flexible displays
      • 9.2.4.1. e-Paper
      • 9.2.4.2. Flexible LCDs
      • 9.2.4.3. Flexible OLEDs (FOLED)
      • 9.2.4.4. Flexible AMOLED
      • 9.2.4.5. Flexible electrophoretic displays
    • 9.2.5. Smart windows
    • 9.2.6. Flexible drones
  • 9.3. GLOBAL MARKET SIZE
  • 9.4. COMPANY PROFILES (20 company profiles)

TABLES

  • Table 1: Evolution of wearable devices, 2011-2017
  • Table 2: Advanced materials for printable, flexible and stretchable sensors and Electronics-Advantages and disadvantages
  • Table 3: Sheet resistance (RS) and transparency (T) values for transparent conductive oxides and alternative materials for transparent conductive electrodes (TCE)
  • Table 4: Markets for wearable devices and applications
  • Table 5: Properties of CNTs and comparable materials
  • Table 6: Companies developing carbon nanotubes for applications in printable, flexible and stretchable electronics
  • Table 7: Types of flexible conductive polymers, properties and applications
  • Table 8: Properties of graphene
  • Table 9: Companies developing graphene for applications in printable, flexible and stretchable electronics
  • Table 10: Advantages and disadvantages of fabrication techniques to produce metal mesh structures
  • Table 11: Types of flexible conductive polymers, properties and applications
  • Table 12: Companies developing metal mesh for applications in printable, flexible and stretchable electronics
  • Table 13: Companies developing silver nanowires for applications in printable, flexible and stretchable electronics
  • Table 14: Nanocellulose properties
  • Table 15: Properties and applications of nanocellulose
  • Table 16: Properties of flexible electronics-cellulose nanofiber film (nanopaper)
  • Table 17: Properties of flexible electronics cellulose nanofiber films
  • Table 18: Companies developing nanocellulose for applications in printable, flexible and stretchable electronics
  • Table 19: Companies developing quantum dots for applications in printable, flexible and stretchable electronics
  • Table 20: Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1-4)
  • Table 21: Properties of graphene quantum dots
  • Table 22: Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2
  • Table 23: Market drivers for printable, flexible and stretchable conductive inks
  • Table 24: Printable electronics products
  • Table 25: Comparative properties of conductive inks
  • Table 26: Applications in conductive inks by type and benefits thereof
  • Table 27: Opportunities for advanced materials in printed electronics
  • Table 28: Applications in flexible and stretchable batteries, by nanomaterials type and benefits thereof
  • Table 29: Price comparison of thin-film transistor (TFT) electronics technology
  • Table 30: Main markets for conductive inks, applications and revenues
  • Table 31: Conductive inks in the flexible and stretchable electronics market 2017-2027 revenue forecast (million $), by ink types
  • Table 32: Market drivers for printable, flexible and stretchable sensors for wearables and IoT
  • Table 33: Wearable electronics devices and stage of development
  • Table 34: Comparison of ITO replacements
  • Table 35: Applications in printable, flexible and stretchable sensors, by advanced materials type and benefits thereof
  • Table 36: Graphene properties relevant to application in sensors
  • Table 37: Global market for wearable electronics, 2015-2027, by application, billions $
  • Table 38: Market drivers for printable, flexible and stretchable medical and healthcare sensors and wearables
  • Table 39: Wearable medical device products and stage of development
  • Table 40: Applications in flexible and stretchable health monitors, by advanced materials type and benefits thereof
  • Table 41: Applications in patch-type skin sensors, by materials type and benefits thereof
  • Table 42: Market drivers for printable, flexible and stretchable electronic clothing and apparel
  • Table 43: Types of smart textiles
  • Table 44: Examples of smart textile products
  • Table 45: Currently available technologies for smart textiles
  • Table 46: Smart clothing and apparel and stage of development
  • Table 47: Applications in textiles, by advanced materials type and benefits thereof
  • Table 48: Nanocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications
  • Table 49: Applications and benefits of graphene in textiles and apparel
  • Table 50: Global smart clothing, interactive fabrics and apparel market
  • Table 51: Market drivers for printable, flexible and stretchable electronic energy storage and converison
  • Table 52: Wearable energy and energy harvesting devices and stage of development
  • Table 53: Applications in flexible and stretchable batteries, by materials type and benefits thereof
  • Table 54: Applications in flexible and stretchable supercapacitors, by nanomaterials type and benefits thereof
  • Table 55: Applications in energy harvesting textiles, by nanomaterials type and benefits thereof
  • Table 56: Potential addressable market for thin film, flexible and printed batteries
  • Table 57: Market drivers for printable, flexible and stretchable displays and electronic components
  • Table 58: Applications in flexible and stretchable circuit boards, by advanced materials type and benefits thereof
  • Table 59: Price comparison of thin-film transistor (TFT) electronics technology

FIGURES

  • Figure 1: Evolution of electronics
  • Figure 2: Wove Band
  • Figure 3: Wearable graphene medical sensor
  • Figure 4: Applications timeline for organic and printed electronics
  • Figure 5: Mimo Baby Monitor
  • Figure 6: Wearable health monitor incorporating graphene photodetectors
  • Figure 7: Schematic of single-walled carbon nanotube
  • Figure 8: Stretchable SWNT memory and logic devices for wearable electronics
  • Figure 9: Graphene layer structure schematic
  • Figure 10: Flexible graphene touch screen
  • Figure 11: Foldable graphene E-paper
  • Figure 12: Large-area metal mesh touch panel
  • Figure 13: Flexible silver nanowire wearable mesh
  • Figure 14: Cellulose nanofiber films
  • Figure 15: Nanocellulose photoluminescent paper
  • Figure 16: LEDs shining on circuitry imprinted on a 5x5cm sheet of CNF
  • Figure 17: Foldable nanopaper
  • Figure 18: Foldable nanopaper antenna
  • Figure 19: Paper memory (ReRAM)
  • Figure 20: Quantum dot
  • Figure 21: The light-blue curve represents a typical spectrum from a conventional white-LED LCD TV. With quantum dots, the spectrum is tunable to any colours of red, green, and blue, and each Color is limited to a narrow band
  • Figure 22: Black phosphorus structure
  • Figure 23: Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal
  • Figure 24: Schematic of germanene
  • Figure 25: Graphdiyne structure
  • Figure 26: Schematic of Graphane crystal
  • Figure 27: Structure of hexagonal boron nitride
  • Figure 28: Structure of 2D molybdenum disulfide
  • Figure 29: Atomic force microscopy image of a representative MoS2 thin-film transistor
  • Figure 30: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge
  • Figure 31: Schematic of a monolayer of rhenium disulphide
  • Figure 32: Silicene structure
  • Figure 33: Monolayer silicene on a silver (111) substrate
  • Figure 34: Silicene transistor
  • Figure 35: Crystal structure for stanene
  • Figure 36: Atomic structure model for the 2D stanene on Bi2Te3(111)
  • Figure 37: Schematic of tungsten diselenide
  • Figure 38: BGT Materials graphene ink product
  • Figure 39: Flexible RFID tag
  • Figure 40: Enfucell Printed Battery
  • Figure 41: Graphene printed antenna
  • Figure 42: Printed antennas for aircraft
  • Figure 43: Stretchable material for formed an in-molded electronics
  • Figure 44: Wearable patch with a skin-compatible, pressure-sensitive adhesive
  • Figure 45: Thin film transistor incorporating CNTs
  • Figure 46: Conductive inks in the flexible and stretchable electronics market 2017-2027 revenue forecast (million $), by ink types
  • Figure 47: Covestro wearables
  • Figure 48: Royole flexible display
  • Figure 49: Panasonic CNT stretchable Resin Film
  • Figure 50: Bending durability of Ag nanowires
  • Figure 51: NFC computer chip
  • Figure 52: NFC translucent diffuser schematic
  • Figure 53: Softceptor sensor
  • Figure 54: BeBop Media Arm Controller
  • Figure 55: LG Innotek flexible textile pressure sensor
  • Figure 56: C2 Sense flexible sensor
  • Figure 57: <hitoe> nanofiber conductive shirt original design(top) and current design (bottom)
  • Figure 58: Garment-based printable electrodes
  • Figure 59: Wearable gas sensor
  • Figure 60: BeBop Sensors Marcel Modular Data Gloves
  • Figure 61: BeBop Sensors Smart Helmet Sensor System
  • Figure 62: Torso and Extremities Protection (TEP) system
  • Figure 63: Global market for wearable electronics, 2015-2027, by application, billions $
  • Figure 64: Global transparent conductive electrodes market forecast by materials type, 2012-2027, millions $
  • Figure 65: BITalino systems
  • Figure 66: Connected human body
  • Figure 67: Flexible, lightweight temperature sensor
  • Figure 68: Prototype ECG sensor patch
  • Figure 69: Graphene-based E-skin patch
  • Figure 70: Wearable bio-fluid monitoring system for monitoring of hydration
  • Figure 71: Smart mouth guard
  • Figure 72: Smart e-skin system comprising health-monitoring sensors, displays, and ultra flexible PLEDs
  • Figure 73: Graphene medical patch
  • Figure 74: TempTraQ wearable wireless thermometer
  • Figure 75: Mimo baby monitor
  • Figure 76: Nanowire skin hydration patch
  • Figure 77: Wearable sweat sensor
  • Figure 78: GraphWear wearable sweat sensor
  • Figure 79: My UV Patch
  • Figure 80: Overview layers of L'Oreal skin patch
  • Figure 81: Global medical and healthcare smart textiles and wearables market, 2015-2027, billions $
  • Figure 82: Global medical and healthcare smart textiles and wearables market, 2015-2027, billions $
  • Figure 83: Omniphobic-coated fabric
  • Figure 84: Conductive yarns
  • Figure 85: Work out shirt incorporating ECG sensors, flexible lights and heating elements
  • Figure 86: Global smart clothing, interactive fabrics and apparel market 2013-2027 revenue forecast (million $)
  • Figure 87 Global smart clothing, interactive fabrics and apparel sales by market segment, 2016
  • Figure 88: Energy harvesting textile
  • Figure 89: StretchSense Energy Harvesting Kit
  • Figure 90: LG Chem Heaxagonal battery
  • Figure 91: Printed 1.5V battery
  • Figure 92: Energy densities and specific energy of rechargeable batteries
  • Figure 93: Stretchable graphene supercapacitor
  • Figure 94: LG OLED flexible lighting panel
  • Figure 95: Flexible OLED incorporated into automotive headlight
  • Figure 96: Flexible & stretchable LEDs based on quantum dots
  • Figure 97: Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper
  • Figure 98: Demand for thin film, flexible and printed batteries 2015, by market
  • Figure 99: Demand for thin film, flexible and printed batteries 2027, by market
  • Figure 100: LG Display LG Display 77-inch flexible transparent OLED display
  • Figure 101: Thin film transistor incorporating CNTs
  • Figure 102: Flexible LCD
  • Figure 103: "Full ActiveTM Flex"
  • Figure 104: FOLED schematic
  • Figure 105: Foldable display
  • Figure 106: Stretchable AMOLED
  • Figure 107: LGD 12.3'' FHD Automotive OLED
  • Figure 108: LECTUM® display
  • Figure 109: Global market for flexible OLED displays, 2015-2027 (billion $)
Back to Top