株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

世界のグラフェン市場

The Global Market for Graphene 2017-2027

発行 Future Markets, Inc. 商品コード 335657
出版日 ページ情報 英文 635 Pages
即納可能
価格
本日の銀行送金レート: 1GBP=155.40円で換算しております。
Back to Top
世界のグラフェン市場 The Global Market for Graphene 2017-2027
出版日: 2017年10月24日 ページ情報: 英文 635 Pages
概要

当レポートでは、世界のグラフェンおよびその他の2D材料の市場について分析し、グラフェンの特性や生産方法、技術・市場の基本構造や、昨今の技術開発・特許取得の動きと今後の方向性、全体的な市場動向の実績値と予測値、地域別および用途別 (エレクトロニクス・フォトニクス・各種センサーなど) の詳細動向、主要企業(開発/製造企業)のプロファイルなどを調査しています。

第1章 調査方法

第2章 エグゼクティブサマリー

第3章 ナノマテリアルの特性

  • 分類

第4章 グラフェンの概要

  • 歴史
  • グラフェンの形状
  • 特性
  • 3Dグラフェン
  • グラフェン量子ドット

第5章 カーボンナノチューブとグラフェン

  • 特性の比較
  • コスト・生産量
  • カーボンナノチューブとグラフェンのハイブリッド
  • カーボンナノチューブとグラフェンの比較分析

第6章 その他の2D材料

  • 黒リン/フォスフォレン
  • C2N
  • 窒化炭素
  • ゲルマネン (Germanene)
  • グラフディン (Graphdiyne)
  • グラファン (Graphane)
  • 六方晶窒化ホウ素
  • 二硫化モリブデン (MoS2)
  • 二硫化レニウム (ReS2) と二セレン化レニウム (ReSe2)
  • シリセン (Silicene)
  • スタネン (Stanene)/チネン (tinene)
  • 二セレン化タングステン
  • グラフェンとその他2Dナノマテリアルの比較分析

第7章 グラフェンの合成物

  • 大面積グラフェンフィルム
  • 酸化グラフェンフレークとグラフェンナノプレートレット
  • 製造方法
  • グラフェン種類別の合成・生産方法
  • グラフェンの製造方法に関する賛否
  • 最新の合成方法
  • 各企業の合成方法

第8章 グラフェン市場の構造と商品化経路

第9章 規制と基準

  • 基準
  • 環境・健康・安全に関する規制
  • 職場での曝露

第10章 特許・出版

  • 製造工程
  • 学術機関
  • 各地域の主導的企業

第11章 技術対応レベル

第12章 近年におけるグラフェン市場の動向

第13章 エンドユーザー市場の部門別分析

  • グラフェンの生産量
  • グラフェンの価格決定
  • グラフェンメーカーとその生産能力

第14章 接着剤

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模
  • 課題
  • 製品ディベロッパー

第15章 航空宇宙

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 課題
  • 製品ディベロッパー

第16章 自動車

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 課題
  • 製品ディベロッパー

第17章 生命科学・医療

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 課題
  • 製品ディベロッパー

第18章 コーティング

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 課題
  • 製品ディベロッパー

第19章 複合材料

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 課題
  • 製品ディベロッパー

第20章 ゴム・タイヤ

  • 用途
  • 市場規模と機会
  • 課題
  • 製品ディベロッパー

第21章 エレクトロニクス・フォトニクス

  • フレキシブルエレクトロニクス・ウェアラブル・導電性フィルム・ディスプレイ
  • トランジスタ・IC
  • メモリデバイス
  • フォトニクス

第22章 エネルギー貯蔵・変換・探査

  • バッテリー
  • スーパーキャパシタ
  • 太陽電池
  • 燃料電池
  • LED照明とUVC
  • 石油・ガス

第23章 ろ過膜

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 課題
  • 製品ディベロッパー

第24章 潤滑剤

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 課題
  • 製品ディベロッパー

第25章 センサー

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 課題
  • 製品ディベロッパー

第26章 スマートテキスタイル・アパレル

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 製品ディベロッパー

第27章 導電性インク

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 製品ディベロッパー

第28章 3Dプリンティング

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 課題
  • 製品ディベロッパー

第29章 グラフェンメーカー

第30章 グラフェン製品およびアプリケーション開発企業

第31章 参考文献

図表

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

‘The Global Market for Graphene’ is a comprehensive analysis of the market and commercial opportunities for these remarkable materials.

The graphene market continues to expand in 2017, with weekly announcements on new multi-million dollar investments, new products (especially in the Asia market) and innovative production processes.

A growing number of products are integrating graphene across a range of markets including consumer electronic devices, wearables, flexible RF devices, supercapacitors, conductive inks, sensors and coatings.

Graphene is a ground-breaking 2D material that possesses extraordinary electrical and mechanical properties that promise a new generation of innovative devices. Beyond graphene, emerging elementary 2D materials such as transition metal dichalcogenides, group V systems including phosphorene, and related isoelectronic structures will potentially allow for flexible electronics and field-effect transistors that exhibit ambipolar transport behaviour with either a direct band-gap or greater gate modulation.

Report contents include:

  • Global production capacities for 2017.
  • Current graphene products.
  • Stage of commercialization for graphene applications, from basic research to market entry.
  • Market drivers, trends and challenges, by end user markets.
  • In-depth market assessment of opportunities for graphene including potential revenues, growth rates, pricing, most likely applications and market challenges.
  • In-depth company profiles, including products, capacities, and commercial activities.
  • Detailed forecasts for key growth areas, opportunities and user demand.
  • Assessment of applications for other 2D materials.
  • Over 210 company profiles.
  • Companies profiled in the report include 3D Graphtech Industries, Applied Graphene Materials, Cealtech, Directa Plus , Enanotec, Graphenano S.L., Graphentech, Hanwha Chemical, Metalysis, Talga Resources and many more.

Table of Contents

1. RESEARCH METHODOLOGY

  • 1.1. Market opportunity analysis
  • 1.2. Market challenges rating system

2. EXECUTIVE SUMMARY

  • 2.1. Two-dimensional (2D) materials
  • 2.2. Graphene
    • 2.2.1. The market in 2016
    • 2.2.2. Products
    • 2.2.3. Production in 2017
    • 2.2.4. Graphene investments 2016-2017
    • 2.2.5. Market outlook
    • 2.2.6. Remarkable properties
    • 2.2.7. Global funding and initiatives
      • 2.2.7.1. Europe
      • 2.2.7.2. Asia
      • 2.2.7.3. United States
    • 2.2.8. Products and applications
    • 2.2.9. Production
    • 2.2.10. Market drivers and trends
      • 2.2.10.1. Production exceeds demand
      • 2.2.10.2. Market revenues remain small
      • 2.2.10.3. Scalability and cost
      • 2.2.10.4. Applications hitting the market
      • 2.2.10.5. Wait and see?
      • 2.2.10.6. Asia and US lead the race
      • 2.2.10.7. China commercializing at a fast rate
      • 2.2.10.8. Competition from other materials
    • 2.2.11. Market and technical challenges
      • 2.2.11.1. Inconsistent supply quality
      • 2.2.11.2. Functionalization and dispersion
      • 2.2.11.3. Cost
      • 2.2.11.4. Product integration
      • 2.2.11.5. Regulation and standards
      • 2.2.11.6. Lack of a band gap
  • 2.3. Key players
    • 2.3.1. Asia-Pacific
      • 2.3.1.1. Australia
    • 2.3.2. North America
    • 2.3.3. Europe

3. PROPERTIES OF NANOMATERIALS

  • 3.1. Categorization

4. OVERVIEW OF GRAPHENE

  • 4.1. History
  • 4.2. Forms of graphene
  • 4.3. Properties
  • 4.4. 3D Graphene
  • 4.5. Graphene Quantum Dots
    • 4.5.1. Synthesis
    • 4.5.2. Applications
      • 4.5.2.1. Optoelectronics, electronics and photonics
      • 4.5.2.2. Energy
      • 4.5.2.3. Biomedicine and healthcare
      • 4.5.2.4. Other
      • 4.5.2.5. Pricing
    • 4.5.3. Producers

5. CARBON NANOTUBES VERSUS GRAPHENE

  • 5.1. Comparative properties
  • 5.2. Cost and production
  • 5.3. Carbon nanotube-graphene hybrids
  • 5.4. Competitive analysis of carbon nanotubes and graphene

6. OTHER 2-D MATERIALS

  • 6.1. Black phosphorus/Phosphorene
    • 6.1.1. Properties
    • 6.1.2. Applications
  • 6.2. C2N
    • 6.2.1. Properties
    • 6.2.2. Applications
  • 6.3. Carbon nitride
    • 6.3.1. Properties
    • 6.3.2. Applications
  • 6.4. Germanene
    • 6.4.1. Properties
    • 6.4.2. Applications
  • 6.5. Graphdiyne
    • 6.5.1. Properties
    • 6.5.2. Applications
  • 6.6. Graphane
    • 6.6.1. Properties
    • 6.6.2. Applications
  • 6.7. Hexagonal boron nitride
    • 6.7.1. Properties
    • 6.7.2. Applications
    • 6.7.3. Producers
  • 6.8. Molybdenum disulfide (MoS2)
    • 6.8.1. Properties
    • 6.8.2. Applications
  • 6.9. Rhenium disulfide (ReS2) and diselenide (ReSe2)
    • 6.9.1. Properties
    • 6.9.2. Applications
  • 6.10. Silicene
    • 6.10.1. Properties
    • 6.10.2. Applications
  • 6.11. Stanene/tinene
    • 6.11.1. Properties
    • 6.11.2. Applications
  • 6.12. Tungsten diselenide
    • 6.12.1. Properties
    • 6.12.2. Applications
  • 6.13. Comparative analysis of graphene and other 2-D nanomaterials

7. GRAPHENE SYNTHESIS

  • 7.1. Large area graphene films
  • 7.2. Graphene oxide flakes and graphene nanoplatelets
  • 7.3. Production methods
    • 7.3.1. Production directly from natural graphite ore
    • 7.3.2. Alternative starting materials
    • 7.3.3. Quality
  • 7.4. Synthesis and production by types of graphene
    • 7.4.1. Graphene nanoplatelets (GNPs)
    • 7.4.2. Graphene nanoribbons
    • 7.4.3. Large-area graphene films
    • 7.4.4. Graphene oxide (GO)
  • 7.5. Pros and cons of graphene production methods
    • 7.5.1. Chemical Vapor Deposition (CVD)
    • 7.5.2. Exfoliation method
    • 7.5.3. Epitaxial growth method
    • 7.5.4. Wet chemistry method (liquid phase exfoliation)
    • 7.5.5. Micromechanical cleavage method
    • 7.5.6. Green reduction of graphene oxide
    • 7.5.7. Plasma
  • 7.6. Recent synthesis methods
  • 7.7. Synthesis methods by company

8. GRAPHENE MARKET STRUCTURE AND ROUTES TO COMMERCIALIZATION

9. REGULATIONS AND STANDARDS

  • 9.1. Standards
  • 9.2. Environmental, health and safety regulation
    • 9.2.1. Europe
    • 9.2.2. United States
    • 9.2.3. Asia
  • 9.3. Workplace exposure

10. PATENTS AND PUBLICATIONS

  • 10.1. Fabrication processes
  • 10.2. Academia
  • 10.3. Regional leaders

11. TECHNOLOGY READINESS LEVEL

12. GRAPHENE INDUSTRY TRENDS 2013-2017

  • 12.1. JANUARY 2013
  • 12.2. FEBRUARY 2013
  • 12.3. APRIL 2013
  • 12.4. MAY 2013
  • 12.5. JUNE 2013
  • 12.6. JULY 2013
  • 12.7. AUGUST 2013
  • 12.8. SEPTEMBER 2013
  • 12.9. OCTOBER 2013
  • 12.10. NOVEMBER 2013
  • 12.11. DECEMBER 2013
  • 12.12. JANUARY 2014
  • 12.13. FEBRUARY 2014
  • 12.14. MARCH 2014
  • 12.15. APRIL 2014
  • 12.16. MAY 2014
  • 12.17. JUNE 2014
  • 12.18. JULY 2014
  • 12.19. AUGUST 2014
  • 12.20. SEPTEMBER 2014
  • 12.21. AUGUST 2014
  • 12.22. SEPTEMBER 2014
  • 12.23. OCTOBER 2014
  • 12.24. NOVEMBER 2014
  • 12.25. DECEMBER 2014
  • 12.26. JANUARY 2015
  • 12.27. FEBRUARY 2015
  • 12.28. MARCH 2015
  • 12.29. APRIL 2015
  • 12.30. MAY 2015
  • 12.31. JUNE 2015
  • 12.32. JULY 2015
  • 12.33. AUGUST 2015
  • 12.34. SEPTEMBER 2015
  • 12.35. OCTOBER 2015
  • 12.36. NOVEMBER 2015
  • 12.37. DECEMBER 2015
  • 12.38. JANUARY 2016
  • 12.39. FEBRUARY 2016
  • 12.40. MARCH 2016
  • 12.41. APRIL 2016
  • 12.42. MAY 2016
  • 12.43. JUNE 2016
  • 12.44. JULY 2016
  • 12.45. AUGUST 2016
  • 12.46. SEPTEMBER 2016
  • 12.47. OCTOBER 2016
  • 12.48. NOVEMBER 2016
  • 12.49. DECEMBER 2016
  • 12.50. JANUARY 2017
  • 12.51. FEBRUARY 2017
  • 12.52. MARCH 2017
  • 12.53. APRIL 2017
  • 12.54. MAY 2017
  • 12.55. JUNE 2017
  • 12.56. JULY 2017
  • 12.57. AUGUST 2017
  • 12.58. SEPTEMBER 2017

13. END USER MARKET SEGMENT ANALYSIS

  • 13.1. Graphene production volumes 2010-2027
  • 13.2. Graphene pricing
    • 13.2.1. Pristine Graphene Flakes pricing
    • 13.2.2. Few-Layer Graphene pricing
    • 13.2.3. Graphene Nanoplatelets pricing
    • 13.2.4. Reduced Graphene Oxide pricing
    • 13.2.5. Graphene Quantum Dots pricing
    • 13.2.6. Graphene Oxide Nanosheets pricing
    • 13.2.7. Multilayer Graphene (MLG) pricing
    • 13.2.8. Mass production of lower grade graphene materials
    • 13.2.9. High grade graphene difficult to mass produce
    • 13.2.10. Bulk supply
    • 13.2.11. Commoditisation
  • 13.3. Graphene producers and production capacities

14. ADHESIVES

  • 14.1. MARKET DRIVERS AND TRENDS
  • 14.2. PROPERTIES AND APPLICATIONS
  • 14.3. GLOBAL MARKET SIZE AND OPPORTUNITY
  • 14.4. MARKET CHALLENGES
  • 14.5. PRODUCT DEVELOPERS

15. AEROSPACE

  • 15.1. MARKET DRIVERS AND TRENDS
  • 15.2. PROPERTIES AND APPLICATIONS
    • 15.2.1. Composites
    • 15.2.2. Coatings
  • 15.3. GLOBAL MARKET SIZE AND OPPORUNTIY
  • 15.4. MARKET CHALLENGES
  • 15.5. PRODUCT DEVELOPERS

16. AUTOMOTIVE

  • 16.1. MARKET DRIVER AND TRENDS
  • 16.2. PROPERTIES AND APPLICATIONS
    • 16.2.1. Composites
    • 16.2.2. Thermally conductive additives
    • 16.2.3. Tires
  • 16.3. GLOBAL MARKET SIZE AND OPPORTUNITY
  • 16.4. MARKET CHALLENGES
  • 16.5. PRODUCT DEVELOPERS

17. LIFE SCIENCES AND MEDICAL

  • 17.1. MARKET DRIVERS AND TRENDS
  • 17.2. PROPERTIES AND APPLICATIONS
    • 17.2.1. Cancer therapy
      • 17.2.1.1. Graphene oxide for therapy and drug delivery
      • 17.2.1.2. Graphene nanosheets
      • 17.2.1.3. Gene delivery
      • 17.2.1.4. Photodynamic Therapy
    • 17.2.2. Medical implants and devices
    • 17.2.3. Wound dressings
    • 17.2.4. Biosensors
      • 17.2.4.1. FRET biosensors for DNA detection
    • 17.2.5. Medical imaging
    • 17.2.6. Tissue engineering
    • 17.2.7. Dental
    • 17.2.8. Electrophysiology
  • 17.3. GLOBAL MARKET SIZE AND OPPORTUNITY
  • 17.4. MARKET CHALLENGES
  • 17.5. PRODUCT DEVELOPERS

18. COATINGS

  • 18.1. MARKET DRIVERS AND TRENDS
    • 18.1.1. New functionalities and improved properties
    • 18.1.2. Need for more effective protection
    • 18.1.3. Sustainability and regulation
    • 18.1.4. Cost of corrosion
    • 18.1.5. Need for improved hygiene
    • 18.1.6. Cost of weather-related damage
    • 18.1.7. Increased demand for coatings for extreme environments
  • 18.2. PROPERTIES AND APPLICATIONS
    • 18.2.1. Anti-corrosion coatings
      • 18.2.1.1. Marine
    • 18.2.2. Anti-microbial
    • 18.2.3. Anti-icing
    • 18.2.4. Barrier coatings
    • 18.2.5. Heat protection
    • 18.2.6. Anti-fouling
    • 18.2.7. Wear and abrasion resistance
    • 18.2.8. Smart windows
  • 18.3. GLOBAL MARKET SIZE AND OPPORTUNITY
    • 18.3.1. Thermal barrier coatings
    • 18.3.2. Barrier coatings
    • 18.3.3. Anti-microbial coatings
    • 18.3.4. De-icing or anti-icing coatings
    • 18.3.5. Abrasion and wear resistant coatings
    • 18.3.6. Anti-corrosion coatings
  • 18.4. MARKET CHALLENGES
    • 18.4.1. Dispersion
    • 18.4.2. Production, scalability and cost
  • 18.5. PRODUCT DEVELOPERS

19. COMPOSITES

  • 19.1. MARKET DRIVERS AND TRENDS
  • 19.2. PROPERTIES AND APPLICATIONS
    • 19.2.1. Polymer composites
    • 19.2.2. Barrier packaging
    • 19.2.3. Electrostatic discharge (ESD) and electromagnetic interference (EMI) shielding
    • 19.2.4. Wind turbines
    • 19.2.5. Ballistic protection
    • 19.2.6. Cement additives
  • 19.3. GLOBAL MARKET SIZE AND OPPORTUNITY
  • 19.4. MARKET CHALLENGES
  • 19.5. PRODUCT DEVELOPERS

20. RUBBER AND TIRES

  • 20.1. APPLICATIONS
  • 20.2. GLOBAL MARKET SIZE AND OPPORTUNITY
  • 20.3. MARKET CHALLENGES
  • 20.4. PRODUCT DEVELOPERS

21. ELECTRONICS AND PHOTONICS

  • 21.1. FLEXIBLE ELECTRONICS, WEARABLES, CONDUCTIVE FILMS AND DISPLAYS
    • 21.1.1. MARKET DRIVERS AND TRENDS
    • 21.1.2. PROPERTIES AND APPLICATIONS
      • 21.1.2.1. Transparent electrodes in flexible electronics
      • 21.1.2.2. Electronic paper
      • 21.1.2.3. Wearable electronics
      • 21.1.2.4. Wearable sensors
    • 21.1.3. GLOBAL MARKET SIZE AND OPPORTUNITY
    • 21.1.4. MARKET CHALLENGES
      • 21.1.4.1. Manufacturing
      • 21.1.4.2. Competing materials
      • 21.1.4.3. Cost in comparison to ITO
      • 21.1.4.4. Problems with transfer and growth
      • 21.1.4.5. Improving sheet resistance
      • 21.1.4.6. Difficulties in display panel integration
    • 21.1.5. PRODUCT DEVELOPERS
  • 21.2. TRANSISTORS AND INTEGRATED CIRCUITS
    • 21.2.1. MARKET DRIVERS AND TRENDS
    • 21.2.2. PROPERTIES AND APPLICATIONS
      • 21.2.2.1. Integrated circuits
      • 21.2.2.2. Transistors
      • 21.2.2.3. Graphene Radio Frequency (RF) circuits
      • 21.2.2.4. Graphene spintronics
    • 21.2.3. GLOBAL MARKET SIZE AND OPPORTUNITY
    • 21.2.4. MARKET CHALLENGES
      • 21.2.4.1. Competition from other materials
      • 21.2.4.2. Lack of band gap
      • 21.2.4.3. Transfer and integration
      • 21.2.4.4. Contact resistance
    • 21.2.5. PRODUCT DEVELOPERS
  • 21.3. MEMORY DEVICES
    • 21.3.1. MARKET DRIVERS AND TRENDS
    • 21.3.2. PROPERTIES AND APPLICATIONS
    • 21.3.3. GLOBAL MARKET SIZE AND OPPORTUNITY
    • 21.3.4. PRODUCT DEVELOPERS
    • 21.3.5. MARKET CHALLENGES
  • 21.4. PHOTONICS
    • 21.4.1. MARKET DRIVERS AND TRENDS
    • 21.4.2. PROPERTIES AND APPLICATIONS
      • 21.4.2.1. Si photonics versus graphene
      • 21.4.2.2. Optical modulators
      • 21.4.2.3. Photodetectors
      • 21.4.2.4. Saturable absorbers
      • 21.4.2.5. Plasmonics
      • 21.4.2.6. Fiber lasers
    • 21.4.3. MARKET SIZE AND OPPORTUNITY
    • 21.4.4. PRODUCT DEVELOPERS
    • 21.4.5. MARKET CHALLENGES
      • 21.4.5.1. Need to design devices that harness graphene's properties
      • 21.4.5.2. Problems with transfer
      • 21.4.5.3. THz absorbance and nonlinearity
      • 21.4.5.4. Stability and sensitivity

22. ENERGY STORAGE, CONVERSION AND EXPLORATION

  • 22.1. BATTERIES
    • 22.1.1. MARKET DRIVERS AND TRENDS
    • 22.1.2. PROPERTIES AND APPLICATIONS
      • 22.1.2.1. Lithium-ion batteries (LIB)
      • 22.1.2.2. Lithium-air batteries
      • 22.1.2.3. Lithium-sulfur batteries (Li-S)
      • 22.1.2.4. Sodium-ion batteries
    • 22.1.3. GLOBAL MARKET SIZE AND OPPORTUNITY
    • 22.1.4. PRODUCT DEVELOPERS
    • 22.1.5. MARKET CHALLENGES
  • 22.2. SUPERCAPACITORS
    • 22.2.1. MARKET DRIVERS AND TRENDS
    • 22.2.2. PROPERTIES AND APPLICATIONS
    • 22.2.3. GLOBAL MARKET SIZE AND OPPORTUNITY
    • 22.2.4. PRODUCT DEVELOPERS
    • 22.2.5. MARKET CHALLENGES
      • 22.2.5.1. Low energy storage capacity of graphene
  • 22.3. PHOTOVOLTAICS
    • 22.3.1. MARKET DRIVERS AND TRENDS
    • 22.3.2. PROPERTIES AND APPLICATIONS
      • 22.3.2.1. ITO replacement
      • 22.3.2.2. Graphene-silicon (Gr-Si) Schottky junction solar cells
      • 22.3.2.3. Halide perovskites/graphene hybrids
    • 22.3.3. GLOBAL MARKET SIZE
    • 22.3.4. PRODUCT DEVELOPERS
    • 22.3.5. MARKET CHALLENGES
  • 22.4. FUEL CELLS
    • 22.4.1. MARKET DRIVERS AND TRENDS
    • 22.4.2. PROPERTIES AND APPLICATIONS
      • 22.4.2.1. Electrocatalyst supports
    • 22.4.3. GLOBAL MARKET SIZE
    • 22.4.4. MARKET CHALLENGES
    • 22.4.5. PRODUCT DEVELOPERS
  • 22.5. LED LIGHTING AND UVC
    • 22.5.1. MARKET DRIVERS AND TRENDS
    • 22.5.2. PROPERTIES AND APPLICATIONS
    • 22.5.3. GLOBAL MARKET SIZE AND OPPORTUNITY
    • 22.5.4. MARKET CHALLENGES
    • 22.5.5. PRODUCT DEVELOPERS
  • 22.6. OIL AND GAS
    • 22.6.1. MARKET DRIVERS AND TRENDS
    • 22.6.2. PROPERTIES AND APPLICATIONS
      • 22.6.2.1. Sensing and reservoir management
      • 22.6.2.2. Coatings
      • 22.6.2.3. Drilling fluids
      • 22.6.2.4. Sorbent materials
      • 22.6.2.5. Catalysts
      • 22.6.2.6. Separation
    • 22.6.3. GLOBAL MARKET SIZE AND OPPORTUNITY
    • 22.6.4. MARKET CHALLENGES
    • 22.6.5. PRODUCT DEVELOPERS

23. FILTRATION

  • 23.1. MARKET DRIVERS AND TRENDS
  • 23.2. PROPERTIES AND APPLICATIONS
    • 23.2.1. Water filtration
    • 23.2.2. Gas separation
    • 23.2.3. Photocatalytic absorbents
    • 23.2.4. Air filtration
  • 23.3. GLOBAL MARKET SIZE AND OPPORTUNITY
  • 23.4. MARKET CHALLENGES
  • 23.5. PRODUCT DEVELOPERS

24. LUBRICANTS

  • 24.1. MARKET DRIVERS AND TRENDS
  • 24.2. PROPERTIES AND APPLICATIONS
  • 24.3. GLOBAL MARKET SIZE AND OPPORTUNITY
  • 24.4. MARKET CHALLENGES
  • 24.5. PRODUCT DEVELOPERS

25. SENSORS

  • 25.1. MARKET DRIVERS AND TRENDS
  • 25.2. PROPERTIES AND APPLICATIONS
    • 25.2.1. Infrared (IR) sensors
    • 25.2.2. Electrochemical and gas sensors
      • 25.2.2.1. Graphene foam
    • 25.2.3. Pressure sensors
    • 25.2.4. Biosensors
    • 25.2.5. Optical sensors
    • 25.2.6. Humidity sensors
    • 25.2.7. Strain sensors
    • 25.2.8. Acoustic sensors
    • 25.2.9. Wireless sensors
    • 25.2.10. Surface enhanced Raman scattering
  • 25.3. GLOBAL MARKET SIZE AND OPPORTUNITY
  • 25.4. MARKET CHALLENGES
    • 25.4.1. Selectivity
    • 25.4.2. Scaling and manufacturing
    • 25.4.3. Sensor recovery
  • 25.5. PRODUCT DEVELOPERS

26. SMART TEXTILES AND APPAREL

  • 26.1. MARKET DRIVERS AND TRENDS
  • 26.2. PROPERTIES AND APPLICATONS
    • 26.2.1. Conductive coatings
  • 26.3. GLOBAL MARKET SIZE
  • 26.4. MARKET CHALLENGES
  • 26.5. PRODUCT DEVELOPERS

27. CONDUCTIVE INKS

  • 27.1. MARKET DRIVERS AND TRENDS
  • 27.2. PROPERTIES AND APPLICATIONS
  • 27.3. GLOBAL MARKET SIZE AND OPPORTUNITY
  • 27.4. MARKET CHALLENGES
  • 27.5. PRODUCT DEVELOPERS

28. 3D PRINTING

  • 28.1. MARKET DRIVERS AND TRENDS
  • 28.2. PROPERTIES AND APPLICATIONS
  • 28.3. GLOBAL MARKET SIZE AND OPPORTUNITY
  • 28.4. MARKET CHALLENGES
  • 28.5. PRODUCT DEVELOPERS

29. GRAPHENE PRODUCERS (113KKKKK producer profiles)

  • 29.1. TYPES OF GRAPHENE PRODUCED, BY PRODUCER

30. GRAPHENE PRODUCT AND APPLICATION DEVELOPERS (94KKKKK company profiles)

  • 30.1. Industrial collaborations and licence agreements
  • 30.2. Markets targeted, by product developers and end users

31. REFERENCES

TABLES

  • Table 1: Consumer products incorporating graphene
  • Table 2: Graphene investments and financial agreements 2017
  • Table 3: Market opportunity assessment matrix for graphene applications
  • Table 4: Graphene target markets-Applications and potential addressable market size
  • Table 5: Main graphene producers by country and annual production capacities
  • Table 6: Categorization of nanomaterials
  • Table 7: Properties of graphene
  • Table 8: Comparison of graphene QDs and semiconductor QDs
  • Table 9: Graphene quantum dot producers
  • Table 10: Comparative properties of carbon materials
  • Table 11: Comparative properties of graphene with nanoclays and carbon nanotubes
  • Table 12: Competitive analysis of Carbon nanotubes and graphene by application area and potential impact by 2027
  • Table 13: Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2
  • Table 14: Markets and applications of phosphorene
  • Table 15: Markets and applications of C2N
  • Table 16: Markets and applications of hexagonal boron-nitride
  • Table 17: Markets and applications of graphdiyne
  • Table 18: Markets and applications of graphane
  • Table 19: Markets and applications of hexagonal boron-nitride
  • Table 20: Markets and applications of MoS2
  • Table 21: Markets and applications of Rhenium disulfide (ReS2) and diselenide (ReSe2)
  • Table 22: Markets and applications of silicene
  • Table 23: Markets and applications of stanene/tinene
  • Table 24: Markets and applications of tungsten diselenide
  • Table 25: Comparative analysis of graphene and other 2-D nanomaterials
  • Table 26: Large area graphene films-Markets, applications and current global market
  • Table 27: Graphene oxide flakes/graphene nanoplatelets-Markets, applications and current global market
  • Table 28: Main production methods for graphene
  • Table 29: Large area graphene films-Markets, applications and current global market
  • Table 30: Graphene synthesis methods, by company
  • Table 31: Graphene market structure
  • Table 32: Published patent publications for graphene, 2004-2014
  • Table 33: Leading graphene patentees
  • Table 34: Industrial graphene patents in 2014
  • Table 35: Global production of graphene, 2010-2027 in tons/year. Base year for projections is 2015
  • Table 36: Types of graphene and prices
  • Table 37: Pristine graphene flakes pricing by producer
  • Table 38: Few-layer graphene pricing by producer
  • Table 39: Graphene nanoplatelets pricing by producer
  • Table 40: Reduced graphene oxide pricing, by producer
  • Table 41: Graphene quantum dots pricing by producer
  • Table 42: Graphene oxide nanosheets pricing by producer
  • Table 43: Multi-layer graphene pricing by producer
  • Table 44: Production capacities of graphene producers, current and planned, metric tons
  • Table 45: Market drivers for use of graphene in adhesives
  • Table 46: Graphene properties relevant to application in adhesives
  • Table 47: Applications and benefits of graphene in adhesives
  • Table 48: Market size for graphene in adhesives
  • Table 49: Market opportunity assessment for graphene in adhesives
  • Table 50: Market challenges rating for graphene in the adhesives market
  • Table 51: Graphene product and application developers in the adhesives industry
  • Table 52: Market drivers for use of graphene in aerospace
  • Table 53: Applications and benefits of graphene in aerospace
  • Table 54: Market size for graphene in aerospace
  • Table 55: Market opportunity assessment for graphene in aerospace
  • Table 56: Market challenges rating for graphene in the aerospace market
  • Table 57: Graphene product and application developers in the aerospace industry
  • Table 58: Market drivers for use of graphene in the automotive sector
  • Table 59: Applications and benefits of graphene in the automotive industry
  • Table 60: Market size for graphene in the automotive industry
  • Table 61: Market opportunity assessment for graphene in the automotive industry
  • Table 62: Applications and commercialization challenges in the automotive sector
  • Table 63: Market challenges rating for graphene in the automotive sector
  • Table 64: Graphene product and application developers in the automotive sector
  • Table 65: Market drivers for use of graphene in the life sciences and medical market
  • Table 66: Graphene properties relevant to application in biomedicine and healthcare
  • Table 67: Applications and benefits of graphene in life sciences and medical
  • Table 68: Market size for graphene in biomedical and healthcare
  • Table 69: Market opportunity assessment for graphene in biomedical & healthcare markets
  • Table 70: Potential addressable market for graphene in biomedical & healthcare markets
  • Table 71: Market challenges in graphene in biomedicine and healthcare
  • Table 72: Market challenges rating for graphene in the biomedical and healthcare market
  • Table 73: Graphene product and application developers in the biomedical and healthcare industry
  • Table 74: Properties of nanocoatings
  • Table 75: Graphene properties relevant to application in coatings
  • Table 76: Markets for nanocoatings
  • Table 77: Market opportunity assessment for graphene in the coatings market
  • Table 78: Market challenges rating for graphene in the coatings market
  • Table 79: Graphene product and application developers in the coatings industry
  • Table 80: Market drivers for use of graphene in composites
  • Table 81: Graphene properties relevant to application in polymer composites
  • Table 82: Applications and benefits of graphene in composites
  • Table 83: Market size for graphene in composites
  • Table 84: Market opportunity assessment for graphene in the composites market
  • Table 85: Market challenges rating for graphene in the composites market
  • Table 86: Graphene product and application developers in the composites industry
  • Table 87: Applications of graphene in rubber and tires
  • Table 88: Market summary and revenues for graphene in the rubber and tires market
  • Table 89: Investment opportunity assessment for graphene in the rubber and tires market
  • Table 90: Market challenges for graphene in rubber and tires
  • Table 91: Companies developing graphene-based products in rubber and tires
  • Table 92: Market drivers for use of graphene in flexible electronics and conductive films
  • Table 93: Applications and benefits of graphene in flexible electronics and conductive films
  • Table 94: Comparison of ITO replacements
  • Table 95: Wearable electronics devices and stage of development
  • Table 96: Graphene properties relevant to application in sensors
  • Table 97: Market size for graphene in flexible electronics and conductive films
  • Table 98: Global market for wearables, 2014-2021, units and US$
  • Table 99: Market opportunity assessment for graphene in flexible electronics, wearables, conductive films and displays
  • Table 100: Market challenges rating for graphene in the flexible electronics, wearables, conductive films and displays market
  • Table 101: Graphene product and application developers in transparent conductive films
  • Table 102: Market drivers for use of graphene in transistors, integrated circuits and other components
  • Table 103: Comparative properties of silicon and graphene transistors
  • Table 104: Applications and benefits of graphene in transistors, integrated circuits and other components
  • Table 105: Market size for graphene in transistors, integrated circuits and other components
  • Table 106: Market opportunity assessment for graphene in transistors, integrated circuits and other components
  • Table 107: Market challenges rating for graphene in the transistors and integrated circuits market
  • Table 108: Graphene product and application developers in transistors and integrated circuits
  • Table 109: Market drivers for use of graphene in memory devices
  • Table 110: Market size for graphene in memory devices
  • Table 111: Graphene product and application developers in memory devices
  • Table 112: Applications and commercialization challenges for graphene in the memory devices market
  • Table 113: Market drivers for use of graphene in photonics
  • Table 114: Graphene properties relevant to application in optical modulators
  • Table 115: Applications and benefits of graphene in photonics
  • Table 116: Market size for graphene in photonics
  • Table 117: Graphene product and application developers in photonics
  • Table 118: Market challenges rating for graphene in the photonics market
  • Table 119: Market drivers for use of graphene in batteries
  • Table 120: Market size for graphene in batteries
  • Table 121: Potential addressable market for thin film, flexible and printed batteries
  • Table 122: Graphene product and application developers in the battery industry
  • Table 123: Market challenges rating for graphene in the batteries market
  • Table 124: Market drivers for use of graphene in supercapacitors
  • Table 125: Comparative properties of graphene supercapacitors and lithium-ion batteries
  • Table 126: Applications and benefits of graphene in supercapacitors
  • Table 127: Market size for graphene in supercapacitors
  • Table 128: Market opportunity assessment for graphene in supercapacitors
  • Table 129: Graphene product and application developers in supercapacitors
  • Table 130: Market challenges rating for graphene in the supercapacitors market
  • Table 131: Market drivers for use of graphene in photovoltaics
  • Table 132: Market size for graphene in photovoltaics
  • Table 133: Market size for graphene in photovoltaics
  • Table 134: Potential addressable market for photovoltaics
  • Table 135: Graphene product and application developers in photovoltaics
  • Table 136: Market challenges rating for graphene in the solar market
  • Table 137: Market drivers for use of graphene in fuel cells and hydrogen storage
  • Table 138: Applications and benefits of graphene in fuel cells and hydrogen storage
  • Table 139: Market size for graphene in fuel cells and hydrogen storage
  • Table 140: Market opportunity assessment for graphene in fuel cells and hydrogen storage
  • Table 141: Market challenges rating for graphene in the fuel cells market
  • Table 142: Graphene product and application developers in fuel cells
  • Table 143: Market drivers for use of graphene in LED lighting and UVC
  • Table 144: Applications of graphene in lighting
  • Table 145: Market size for graphene in LED lighting and UVC
  • Table 146: Investment opportunity assessment for graphene in the lighting market
  • Table 147: Market impediments for graphene in lighting
  • Table 148: Graphene product and application developers in the LED and UVC lighting market
  • Table 149: Market drivers for graphene in oil and gas
  • Table 150: Applications of graphene in the oil and gas market
  • Table 151: Application markets, competing materials, graphene advantages and current market size in oil and gas
  • Table 152: Market summary and revenues for graphene in the oil and gas market
  • Table 153: Investment opportunity assessment for graphene in the oil and gas market
  • Table 154: Market challenges rating for graphene in the oil and gas market
  • Table 155: Graphene product and application developers in the oil and gas market
  • Table 156: Market drivers for use of graphene in filtration
  • Table 157: Applications and benefits of graphene in filtration and separation
  • Table 158: Market size for graphene in filtration
  • Table 159: Market opportunity assessment for graphene in the filtration and separation market
  • Table 160: Market challenges rating for graphene in the filtration and separation market
  • Table 161: Graphene product and application developers in the filtration industry
  • Table 162: Market drivers for use of graphene in lubricants
  • Table 163: Applications of graphene in the lubricants market
  • Table 164: Applications of carbon nanomaterials in lubricants
  • Table 165: Market size for graphene in lubricants
  • Table 166: Market opportunity assessment for graphene in lubricants
  • Table 167: Market challenges rating for graphene in the lubricants market
  • Table 168: Graphene product and application developers in the lubricants industry
  • Table 169: Market drivers for use of graphene in sensors
  • Table 170: Applications and benefits of graphene in sensors
  • Table 171: Graphene properties relevant to application in sensors
  • Table 172: Comparison of ELISA (enzyme-linked immunosorbent assay) and graphene biosensor
  • Table 173: Market size for graphene in sensors
  • Table 174: Market opportunity assessment for graphene in the sensors market
  • Table 175: Market challenges rating for graphene in the sensors market
  • Table 176: Graphene product and application developers in the sensors industry
  • Table 177: Types of smart textiles
  • Table 178: Smart textile products
  • Table 179: Market drivers for use of graphene in smart textiles and apparel
  • Table 180: Desirable functional properties for the textiles industry afforded by the use of nanomaterials
  • Table 181: Applications and benefits of graphene in textiles and apparel
  • Table 182: Global market for smart clothing and apparel, 2014-2021, units and revenues (US$)
  • Table 183: Market opportunity assessment for graphene in smart textiles and apparel
  • Table 184: Market impediments for graphene in textiles
  • Table 185: Market challenges for graphene in textiles and apparel
  • Table 186: Graphene product and application developers in the textiles industry
  • Table 187: Market drivers for use of graphene in conductive inks
  • Table 188: Comparative properties of conductive inks
  • Table 189: Opportunities for graphene and 2D materials in printed electronics
  • Table 190: Potential addressable market for graphene in conductive inks
  • Table 191: Market opportunity assessment for graphene in conductive inks
  • Table 192: Market impediments for graphene in conductive inks
  • Table 193: Graphene product and application developers in conductive inks
  • Table 194: Market drivers for use of graphene in 3D printing
  • Table 195: Graphene properties relevant to application in 3D printing
  • Table 196: Market size for graphene in 3D printing
  • Table 197: Market opportunity assessment for graphene in 3D printing
  • Table 198: Market challenges rating for nanotechnology and nanomaterials in the 3D printing market
  • Table 199: Graphene product and application developers in the 3D printing industry
  • Table 200: Graphene producers and types produced
  • Table 113: Graphene producers target market matrix
  • Table 114: Graphene industrial collaborations, licence agreements and target markets
  • Table 115: Graphene product developers and end users target market matrix

FIGURES

  • Figure 1: Global market for graphene 2010-2027 in tons/year
  • Figure 2: Graphene production capacity, current and planned
  • Figure 3: Demand for graphene, by market, 2027
  • Figure 4: Global government funding for graphene in millions USD to 2015
  • Figure 5: Global consumption of graphene 2016, by region
  • Figure 6: 15-inch single-layer graphene sheet being prepared in the Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences
  • Figure 7: Graphene layer structure schematic
  • Figure 8: Graphite and graphene
  • Figure 9: Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene.
  • Figure 10: Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1-4)
  • Figure 11: Green-fluorescing graphene quantum dots
  • Figure 12: Graphene quantum dots
  • Figure 13: Graphene can be rolled up into a carbon nanotube, wrapped into a fullerene, and stacked into graphite
  • Figure 14: Black phosphorus structure
  • Figure 15: Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal
  • Figure 16: Schematic of germanene
  • Figure 17: Graphdiyne structure
  • Figure 18: Schematic of Graphane crystal
  • Figure 19: Structure of hexagonal boron nitride
  • Figure 20: Structure of 2D molybdenum disulfide
  • Figure 21: Atomic force microscopy image of a representative MoS2 thin-film transistor
  • Figure 22: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge
  • Figure 23: Schematic of a monolayer of rhenium disulphide
  • Figure 24: Silicene structure
  • Figure 25: Monolayer silicene on a silver (111) substrate
  • Figure 26: Silicene transistor
  • Figure 27: Crystal structure for stanene
  • Figure 28: Atomic structure model for the 2D stanene on Bi2Te3(111)
  • Figure 29: Schematic of tungsten diselenide
  • Figure 30: Graphene synthesis methods
  • Figure 31: TEM micrographs of: A) HR-CNFs; B) GANF® HR-CNF, it can be observed its high graphitic structure; C) Unraveled ribbon from the HR-CNF; D) Detail of the ribbon; E) Scheme of the structure of the HR-CNFs; F) Large single graphene oxide sheets derived from GANF
  • Figure 32: Graphene nanoribbons grown on germanium
  • Figure 33: Methods of synthesizing high-quality graphene
  • Figure 34: Roll-to-roll graphene production process
  • Figure 35: Schematic of roll-to-roll manufacturing process
  • Figure 36: Microwave irradiation of graphite to produce single-layer graphene
  • Figure 37: Schematic of typical commercialization route for graphene producer
  • Figure 38: Published patent publications for graphene, 2004-2014
  • Figure 39: Technology Readiness Level (TRL) for graphene
  • Figure 40: Global market for graphene 2010-2027 in tons/year
  • Figure 41: Graphene Adhesives
  • Figure 42: Potential addressable market for graphene in adhesives
  • Figure 43: Potential addressable market for graphene in aerospace
  • Figure 44: Potential addressable market for graphene-enabled applications in aerospace
  • Figure 45: Graphene-based automotive components
  • Figure 46: Antistatic graphene tire
  • Figure 47: Potential addressable market for graphene in the automotive sector
  • Figure 48: Potential addressable market for graphene in the automotive sector
  • Figure 49: Graphene-based E-skin patch
  • Figure 50: Graphene Frontiers' Six™ chemical sensors consists of a field effect transistor (FET) with a graphene channel. Receptor molecules, such as DNA, are attached directly to the graphene channel
  • Figure 51: Graphene-Oxide based chip prototypes for biopsy-free early cancer diagnosis
  • Figure 52: Potential addressable market for graphene-enabled applications in the biomedical and healthcare market
  • Figure 53: Heat transfer coating developed at MIT
  • Figure 54: Water permeation through a brick without (left) and with (right) “graphene paint” coating
  • Figure 55: Four layers of graphene oxide coatings on polycarbonate
  • Figure 56: Global Paints and Coatings Market, share by end user market
  • Figure 57: Potential addressable market for graphene in the coatings market
  • Figure 58: Potential addressable market for graphene in the coatings market
  • Figure 59: Potential addressable market for graphene in composites
  • Figure 60: Potential addressable market for graphene in the composites market
  • Figure 61: Moxi flexible film developed for smartphone application
  • Figure 62: Flexible graphene touch screen
  • Figure 63: Galapad Settler smartphone
  • Figure 64: Flexible organic light emitting diode (OLED) using graphene electrode
  • Figure 65: Graphene electrochromic devices. Top left: Exploded-view illustration of the graphene electrochromic device. The device is formed by attaching two graphene-coated PVC substrates face-to-face and filling the gap with a liquid ionic electrolyte
  • Figure 66: Flexible mobile phones with graphene transparent conductive film
  • Figure 67: Foldable graphene E-paper
  • Figure 68: Covestro wearables
  • Figure 69: Softceptor sensor
  • Figure 70: BeBop Media Arm Controller
  • Figure 71: LG Innotek flexible textile pressure sensor
  • Figure 72: Wearable gas sensor
  • Figure 73: Global touch panel market ($ million), 2011-2018
  • Figure 74: Capacitive touch panel market forecast by layer structure (Ksqm)
  • Figure 75: Global transparent conductive film market forecast (million $)
  • Figure 76: Global transparent conductive film market forecast by materials type, 2015, %
  • Figure 77: Global transparent conductive film market forecast by materials type, 2020, %
  • Figure 78: Global transparent conductive film market forecast by materials type, 2027, %
  • Figure 79: Global market revenues for smart wearable devices 2014-2021, in US$
  • Figure 80: Potential addressable market for graphene in flexible electronics, wearables, conductive films and displays
  • Figure 81: Potential addressable market for graphene in the flexible electronics, wearables, conductive films and displays market
  • Figure 82: Schematic of the wet roll-to-roll graphene transfer from copper foils to polymeric substrates
  • Figure 83: The transmittance of glass/ITO, glass/ITO/four organic layers, and glass/ITO/four organic layers/4-layer graphene
  • Figure 84: Graphene IC in wafer tester
  • Figure 85: A monolayer WS2-based flexible transistor array
  • Figure 86: Schematic cross-section of a graphene based transistor (GBT, left) and a graphene field-effect transistor (GFET, right)
  • Figure 87: Potential addressable market for graphene in transistors and integrated circuits
  • Figure 88: Potential addressable market for graphene in the transistors and integrated circuits market
  • Figure 89: Graphene oxide-based RRAm device on a flexible substrate
  • Figure 90: Layered structure of tantalum oxide, multilayer graphene and platinum used for resistive random access memory (RRAM)
  • Figure 91: A schematic diagram for the mechanism of the resistive switching in metal/GO/Pt
  • Figure 92: Hybrid graphene phototransistors
  • Figure 93: Wearable health monitor incorporating graphene photodetectors
  • Figure 94: Flexible PEN coated with graphene and a QD thin film (20nm) is highly visibly transparent and photosensitive
  • Figure 95: The SkelStart Engine Start Module 2.0 based on the graphene-based SkelCap ultracapacitors
  • Figure 96: H600 concept car
  • Figure 97: Anion concept car
  • Figure 98: Potential addressable market for graphene in the thin film, flexible and printed batteries market
  • Figure 99: Skeleton Technologies ultracapacitor
  • Figure 100: Zapgo supercapacitor phone charger
  • Figure 101: Solar cell with nanowires and graphene electrode
  • Figure 102: Potential addressable market for graphene in photovoltaics
  • Figure 103: Schematic of boron doped graphene for application in gas sensors
  • Figure 104: Directa Plus Grafysorber
  • Figure 105: Nanometer-scale pores in single-layer freestanding graphene membrane can effectively filter NaCl salt from water
  • Figure 106: Degradation of organic dye molecules by graphene hybrid composite photocatalysts
  • Figure 107: Graphene anti-smog mask
  • Figure 108: GFET sensors
  • Figure 109: First generation point of care diagnostics
  • Figure 110: Graphene Field Effect Transistor Schematic
  • Figure 111: Potential addressable market for graphene in the sensors market
  • Figure 112: Global market revenues for smart clothing and apparel 2014-2021, in US$
  • Figure 113: Global market revenues for nanotech-enabled smart clothing and apparel 2014-2021, in US$, conservative estimate
  • Figure 114: Global market revenues for nanotech-enabled smart clothing and apparel 2014-2021, in US$, optimistic estimate
  • Figure 115: Graphene printed antenna
  • Figure 116: BGT Materials graphene ink product
  • Figure 117: Vorbeck Materials conductive ink products
  • Figure 118: Potential addressable market for graphene in the conductive ink market
  • Figure 119: 3D Printed tweezers incorporating Carbon Nanotube Filament
Back to Top