表紙
市場調査レポート

グラフェン・2D材料の世界市場

The Graphene and 2-D Materials Global Opportunity Report

発行 Future Markets, Inc. 商品コード 335657
出版日 ページ情報 英文 667 Pages
即納可能
価格
本日の銀行送金レート: 1USD=101.39円で換算しております。
Back to Top
グラフェン・2D材料の世界市場 The Graphene and 2-D Materials Global Opportunity Report
出版日: 2016年06月28日 ページ情報: 英文 667 Pages
概要

当レポートでは、世界のグラフェンおよびその他の2D材料の市場について分析し、グラフェンの特性や生産方法、技術・市場の基本構造や、昨今の技術開発・特許取得の動きと今後の方向性、全体的な市場動向の実績値と予測値、地域別および用途別 (エレクトロニクス・フォトニクス・各種センサーなど) の詳細動向、主要企業(開発/製造企業)のプロファイルなどを調査しています。

第1章 エグゼクティブサマリー

第2章 ナノマテリアルの特性

  • 分類

第3章 ナノマテリアルの概要

  • 歴史
  • グラフェンの形状
  • 特性
  • 3Dグラフェン
  • グラフェン量子ドット

第4章 カーボンナノチューブとグラフェン

  • 特性の比較
  • コスト・生産量
  • カーボンナノチューブとグラフェンのハイブリッド
  • カーボンナノチューブとグラフェンの比較分析

第5章 その他の2D材料

  • 黒リン/フォスフォレン
  • C2N
  • 窒化炭素
  • ゲルマネン (Germanene)
  • グラフディン (Graphdiyne)
  • グラファン (Graphane)
  • 六方晶窒化ホウ素
  • 二硫化モリブデン (MoS2)
  • 二硫化レニウム (ReS2) と二セレン化レニウム (ReSe2)
  • シリセン (Silicene)
  • スタネン (Stanene)/チネン (tinene)
  • 二セレン化タングステン
  • グラフェンとその他2Dナノマテリアルの比較分析

第6章 グラフェンの合成物

  • 大面積グラフェンフィルム
  • 酸化グラフェンフレークとグラフェンナノプレートレット
  • 製造・合成方法
  • 品質
  • グラフェン種類別の合成・生産方法
  • グラフェンの合成方法に関する賛否
  • 最新の合成方法
  • 各企業の合成方法

第7章 グラフェン市場の構造と商品化経路

第8章 規制と基準

  • 基準
  • 環境・健康・安全に関する規制
  • 職場での曝露

第9章 特許・出版

  • 製造工程
  • 学術機関
  • 各地域の主導的企業

第10章 技術対応レベル

第11章 近年におけるグラフェン市場の動向

第12章 エンドユーザー市場の部門別分析

  • グラフェンの生産量
  • グラフェンメーカーとその生産能力

第13章 接着剤

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 製品ディベロッパー

第14章 航空宇宙

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 製品ディベロッパー

第15章 自動車

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 課題
  • 製品ディベロッパー

第16章 バイオ医療・ヘルスケア

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 課題
  • 製品ディベロッパー

第17章 コーティング

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 製品ディベロッパー

第18章 複合材料

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 課題
  • 製品ディベロッパー

第19章 エレクトロニクス・フォトニクス

  • エレクトロニクスにおけるグラフェンと2D材料
  • フレキシブルエレクトロニクス・導電性フィルム・ディスプレイ
  • 導電性インク
  • トランジスタ・IC
  • メモリデバイス
  • フォトニクス

第20章 エネルギー貯蔵・変換・探査

  • バッテリー
  • スーパーキャパシタ
  • 太陽電池
  • 燃料電池
  • LED照明とUVC
  • 石油・ガス
  • 製品ディベロッパー

第21章 ろ過膜・分離膜

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 課題
  • 製品ディベロッパー

第22章 潤滑剤

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 課題
  • 製品ディベロッパー

第23章 センサー

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 課題
  • 製品ディベロッパー

第24章 繊維

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 製品ディベロッパー

第25章 3Dプリンティング

  • 市場の発展因子と動向
  • 特性と用途
  • 市場規模と機会
  • 課題
  • 製品ディベロッパー

第26章 グラフェンメーカーと製品開発企業

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

Two-dimensional (2D) materials are currently one of the most active areas of advanced materials research, and offer a huge opportunity for both fundamental studies and practical applications, including superfast, low-power, flexible and wearable electronics, sensors, photonics and electrochemical energy storage devices that will have an immense impact on our society.

Graphene is a ground-breaking 2D material that possesses extraordinary electrical and mechanical properties that promise a new generation of innovative devices. New methods of scalable synthesis of high-quality graphene, clean delamination transfer and device integration have resulted in the commercialization of state-of-the-art electronics devices such as graphene touchscreens in smartphones and flexible RF devices on plastics.

Beyond graphene, emerging elementary 2D materials such as transition metal dichalcogenides, group V systems including phosphorene, and related isoelectronic structures will potentially allow for flexible electronics and field-effect transistors that exhibit ambipolar transport behaviour with either a direct band-gap or greater gate modulation.

Graphene and 2D materials exhibit a unique combination of mechanical, thermal, electronic and optical properties that provide opportunities for new innovation in:

Electronics & photonics

  • Conductive electrode films for flexible displays.
  • 2D printable and transparent ultrathin electronic devices.
  • 2D transistors and circuits.
  • RFID tags.
  • 2D magnetic semiconductors.
  • Conductive inks for wearable electronics.
  • 2d MOSFETs.
  • Inkjet-printed electronics.
  • Flexible Graphene FETs.
  • Flexible TMD FETs for digital logic and RF.
  • Graphene optical modulators.

Energy

  • Li-ion battery additives.
  • Proton exchange fuel cell membranes.
  • Hydrogen fuel cells.
  • Graphene electrodes for supercapacitors
  • Transparent electrodes in photovoltaic cells.

Automotive

  • Tire additives for improved abrasion resistance.
  • Anti-scratch and anti-corrosion coatings.
  • Automotive composites.
  • Anti-fogging coatings.

Aerospace

  • De-icing coatings.
  • Electrically conductive composites.
  • EMI shielding coatings.
  • Anti-corrosion coatings.
  • Glass additives.

Biomedicine and healthcare

  • Tissue engineering scaffols to facilitate cell growth and tissue regeneration.
  • Carriers for drug delivery.
  • Biosensor chips.
  • Brain electrodes.
  • Anti-bacterial materials.
  • Gene therapy.
  • Photodynamic therapy.
  • Cell imaging.

Polymer composites

  • Nanocomposites for wind turbines.
  • Barrier packaging materials.
  • ESD and EMI shielding.
  • Sporting goods composites (e.g. bike tires).
  • Composites with improved conductive and thermal properties.

Filtration

  • Gas separation membranes.
  • Photocatalytic absorbents.
  • Ultrathin, high-flux and energy-efficient sieving membranes.

Sensors

  • Electrochemical sensors.
  • DNA detection platforms.
  • Pressure sensors.
  • Optical sensors.
  • Humidity sensors.
  • Acoustic sensors.
  • Wireless sensors.

WHAT DOES THE REPORT INCLUDE?

  • Comprehensive quantitative data and forecasts for the global graphene market to 2025.
  • Qualitative insight and perspective on the current market and future trends in end user markets based on interviews with key executives.
  • End user market analysis and technology timelines.
  • Financial estimates for the markets graphene will impact.
  • Patent analysis.
  • Competitive analysis of carbon nanotubes versus graphene.
  • Comparative analysis of graphene and other 2D Materials.
  • Tables and figures illustrating graphene market size
  • Full company profiles of graphene producers and application developers including technology descriptions and end user markets targeted
  • Profiles of prominent research centres
  • Industry activity and breakthroughs by market 2013-2016.

Table of Contents

1 EXECUTIVE SUMMARY

  • 1.1 Two-dimensional (2D) materials
  • 1.2 Graphene
    • 1.2.1 Products
    • 1.2.2 Short-term opportunities
    • 1.2.3 Medium-term opportunities
    • 1.2.4 Remarkable properties
    • 1.2.5 Global funding and initiatives
      • 1.2.5.1 Europe
      • 1.2.5.2 Asia
      • 1.2.5.3 United States
    • 1.2.6 Products and applications
    • 1.2.7 Production
    • 1.2.8 Market drivers and trends
      • 1.2.8.1 Production exceeds demand
      • 1.2.8.2 Market revenues remain small
      • 1.2.8.3 Scalability and cost
      • 1.2.8.4 Applications hitting the market
      • 1.2.8.5 Wait and see?
      • 1.2.8.6 Asia and US lead the race
      • 1.2.8.7 Competition from other materials
    • 1.2.9 Market and technical challenges
      • 1.2.9.1 Inconsistent supply quality
      • 1.2.9.2 Functionalization and dispersion
      • 1.2.9.3 Cost
      • 1.2.9.4 Product integration
      • 1.2.9.5 Regulation and standards
      • 1.2.9.6 Lack of a band gap

2 PROPERTIES OF NANOMATERIALS

  • 2.1 Categorization

3 OVERVIEW OF GRAPHENE

  • 3.1 History
  • 3.2 Forms of graphene
  • 3.3 Properties
  • 3.4 3D Graphene
  • 3.5 Graphene Quantum Dots
    • 3.5.1 Synthesis
    • 3.5.2 Applications
    • 3.5.3 Producers

4 CARBON NANOTUBES VERSUS GRAPHENE

  • 4.1 Comparative properties
  • 4.2 Cost and production
  • 4.3 Carbon nanotube-graphene hybrids
  • 4.4 Competitive analysis of carbon nanotubes and graphene

5 OTHER 2D MATERIALS

  • 5.1 Black phosphorus/Phosphorene
    • 5.1.1 Properties
    • 5.1.2 Applications
  • 5.2 C2N
    • 5.2.1 Properties
    • 5.2.2 Applications
  • 5.3 Carbon nitride
    • 5.3.1 Properties
    • 5.3.2 Applications
  • 5.4 Germanene
    • 5.4.1 Properties
    • 5.4.2 Applications
  • 5.5 Graphdiyne
    • 5.5.1 Properties
    • 5.5.2 Applications
  • 5.6 Graphane
    • 5.6.1 Properties
    • 5.6.2 Applications
  • 5.7 Hexagonal boron nitride
    • 5.7.1 Properties
    • 5.7.2 Applications
    • 5.7.3 Producers
  • 5.8 Molybdenum disulfide (MoS2)
    • 5.8.1 Properties
    • 5.8.2 Applications
  • 5.9 Rhenium disulfide (ReS2) and diselenide (ReSe2)
    • 5.9.1 Properties
    • 5.9.2 Applications
  • 5.10 Silicene
    • 5.10.1 Properties
    • 5.10.2 Applications
  • 5.11 Stanene/tinene
    • 5.11.1 Properties
    • 5.11.2 Applications
  • 5.12 Tungsten diselenide
    • 5.12.1 Properties
    • 5.12.2 Applications
  • 5.13 Comparative analysis of graphene and other 2-D nanomaterials

6 GRAPHENE SYNTHESIS

  • 6.1 Large area graphene films
  • 6.2 Graphene oxide flakes and graphene nanoplatelets
  • 6.3 Production and synthesis methods
    • 6.3.1 Graphene from graphite ore
    • 6.3.1.1 Production directly from natural graphite ore
    • 6.3.1.2 Alternative starting materials
  • 6.4 Quality
  • 6.5 Synthesis and production by types of graphene
    • 6.5.1 Graphene nanoplatelets (GNPs)
    • 6.5.2 Graphene nanoribbons
    • 6.5.3 Large-area graphene films
    • 6.5.4 Graphene oxide flakes (GO)
  • 6.6 Pros and cons of graphene synthesis methods
    • 6.6.1 Chemical Vapor Deposition (CVD)
    • 6.6.2 Exfoliation method
    • 6.6.3 Epitaxial growth method
    • 6.6.4 Wet chemistry method (liquid phase exfoliation)
    • 6.6.5 Micromechanical cleavage method
    • 6.6.6 Green reduction of graphene oxide
    • 6.6.7 Plasma
  • 6.7 Recent synthesis methods
    • 6.7.1 Ben-Gurion University of the Negev (BGU) and University of Western Australia
    • 6.7.2 Graphene Frontiers
    • 6.7.3 MIT and the University of Michigan
    • 6.7.4 Oak Ridge National Laboratory/University of Texas/General Graphene
    • 6.7.5 University of Florida/Donghua University
    • 6.7.6 Ulsan National Institute of Science and Technology (UNIST) and Case Western Reserve University
    • 6.7.7 Trinity College Dublin
    • 6.7.8 Sungkyunkwan University and Samsung Advanced Institute of Technology (SAIT)
    • 6.7.9 Korea Institute of Science and Technology (KIST), Chonbuk National University and KRICT
    • 6.7.10 NanoXplore
    • 6.7.11 Carbon Sciences Inc
    • 6.7.12 California Institute of Technology
    • 6.7.13 Shanghai Institute of Microsystem and Information Technology
    • 6.7.14 Oxford University
    • 6.7.15 University of Tokyo
  • 6.8 Synthesis methods by company

7 GRAPHENE MARKET STRUCTURE AND ROUTES TO COMMERCIALIZATION

8 REGULATIONS AND STANDARDS

  • 8.1 Standards
  • 8.2 Environmental, health and safety regulation
    • 8.2.1 Europe
    • 8.2.2 United States
    • 8.2.3 Asia
  • 8.3 Workplace exposure

9 PATENTS AND PUBLICATIONS

  • 9.1 Fabrication processes
  • 9.2 Academia
  • 9.3 Regional leaders

10 TECHNOLOGY READINESS LEVEL

11 GRAPHENE INDUSTRY NEWS 2013-2016

  • 11.1 JANUARY 2013
  • 11.2 FEBRUARY 2013
  • 11.3 APRIL 2013
  • 11.4 MAY 2013
  • 11.5 JUNE 2013
  • 11.6 JULY 2013
  • 11.7 AUGUST 2013
  • 11.8 SEPTEMBER 2013
  • 11.9 OCTOBER 2013
  • 11.10 NOVEMBER 2013
  • 11.11 DECEMBER 2013
  • 11.12 JANUARY 2014
  • 11.13 FEBRUARY 2014
  • 11.14 MARCH 2014
  • 11.15 APRIL 2014
  • 11.16 MAY 2014
  • 11.17 JUNE 2014
  • 11.18 JULY 2014
  • 11.19 AUGUST 2014
  • 11.20 SEPTEMBER 2014
  • 11.21 AUGUST 2014
  • 11.22 SEPTEMBER 2014
  • 11.23 OCTOBER 2014
  • 11.24 NOVEMBER 2014
  • 11.25 DECEMBER 2014
  • 11.26 JANUARY 2015
  • 11.27 FEBRUARY 2015
  • 11.28 MARCH 2015
  • 11.29 APRIL 2015
  • 11.30 MAY 2015
  • 11.31 JUNE 2015
  • 11.32 JULY 2015
  • 11.33 AUGUST 2015
  • 11.34 SEPTEMBER 2015
  • 11.35 OCTOBER 2015
  • 11.36 NOVEMBER 2015
  • 11.37 DECEMBER 2015
  • 11.38 JANUARY 2016
  • 11.39 FEBRUARY 2016
  • 11.40 MARCH 2016
  • 11.41 APRIL 2016
  • 11.42 MAY 2016

12 END USER MARKET SEGMENT ANALYSIS

  • 12.1 Graphene production volumes 2010-2025
  • 12.2 Graphene producers and production capacities

13 ADHESIVES

  • 13.1 MARKET DRIVERS AND TRENDS
    • 13.1.1 Thermal management in electronics
    • 13.1.2 Environmental sustainability
  • 13.2 PROPERTIES AND APPLICATIONS
  • 13.3 MARKET SIZE AND OPPORTUNITY
  • 13.4 PRODUCT DEVELOPERS

14 AEROSPACE

  • 14.1 MARKET DRIVERS AND TRENDS
    • 14.1.1 Safety
    • 14.1.2 Reduced fuel consumption and costs
    • 14.1.3 Increased durability
    • 14.1.4 Multi-functionality
    • 14.1.5 Need for new de-icing solutions
    • 14.1.6 Weight reduction
    • 14.1.7 Need for improved lightning protection materials
  • 14.2 PROPERTIES AND APPLICATIONS
    • 14.2.1 Composites
    • 14.2.2 Coatings
  • 14.3 MARKET SIZE AND OPPORTUNITY
  • 14.4 PRODUCT DEVELOPERS

15 AUTOMOTIVE

  • 15.1 MARKET DRIVER AND TRENDS
    • 15.1.1 Environmental
    • 15.1.2 Safety
    • 15.1.3 Lightweighting
    • 15.1.4 Cost
  • 15.2 PROPERTIES AND APPLICATIONS
    • 15.2.1 Composites
    • 15.2.2 Thermally conductive additives
  • 15.3 MARKET SIZE AND OPPORTUNITY
  • 15.4 CHALLENGES
  • 15.5 PRODUCT DEVELOPERS

16 BIOMEDICAL & HEALTHCARE

  • 16.1 MARKET DRIVERS AND TRENDS
    • 16.1.1 Improved drug delivery for cancer therapy
    • 16.1.2 Shortcomings of chemotherapies
    • 16.1.3 Biocompatibility of medical implants
    • 16.1.4 Anti-biotic resistance
    • 16.1.5 Growth in advanced woundcare market
    • 16.1.6 Growth in the wearable monitoring market
  • 16.2 PROPERTIES AND APPLICATIONS
    • 16.2.1 Cancer therapy
      • 16.2.1.1 Graphene oxide for therapy and drug delivery
      • 16.2.1.2 Graphene nanosheets
      • 16.2.1.3 Gene delivery
      • 16.2.1.4 Photodynamic Therapy
    • 16.2.2 Medical implants and devices
    • 16.2.3 Wound dressings
    • 16.2.4 Biosensors
      • 16.2.4.1 FRET biosensors for DNA detection
    • 16.2.5 Medical imaging
    • 16.2.6 Tissue engineering
    • 16.2.7 Dental
    • 16.2.8 Electrophysiology
  • 16.3 MARKET SIZE AND OPPORTUNITY
  • 16.4 CHALLENGES
  • 16.5 PRODUCT DEVELOPERS

17 COATINGS

  • 17.1 MARKET DRIVERS AND TRENDS
    • 17.1.1 New functionalities and improved properties
    • 17.1.2 Need for more effective protection
    • 17.1.3 Sustainability and regulation
    • 17.1.4 Cost of corrosion
    • 17.1.5 Need for improved hygiene
    • 17.1.6 Cost of weather-related damage
    • 17.1.7 Increased demand for coatings for extreme environments
  • 17.2 PROPERTIES AND APPLICATIONS
    • 17.2.1 Anti-corrosion coatings
      • 17.2.1.1 Marine
    • 17.2.2 Anti-microbial
    • 17.2.3 Anti-icing
    • 17.2.4 Barrier coatings
    • 17.2.5 Heat protection
    • 17.2.6 Anti-fouling
    • 17.2.7 Wear and abrasion resistance
    • 17.2.8 Smart windows
  • 17.3 MARKET SIZE AND OPPORTUNITY
  • 17.4 PRODUCT DEVELOPERS

18 COMPOSITES

  • 18.1 MARKET DRIVERS AND TRENDS
    • 18.1.1 Improved performance over traditional composites
    • 18.1.2 Multi-functionality
    • 18.1.3 Growth in wind energy market
  • 18.2 PROPERTIES AND APPLICATIONS
    • 18.2.1 Polymer composites
    • 18.2.2 Barrier packaging
    • 18.2.3 Electrostatic discharge (ESD) and electromagnetic interference (EMI) shielding
    • 18.2.4 Wind turbines
    • 18.2.5 Ballistic protection
    • 18.2.6 Cement additives
  • 18.3 MARKET SIZE AND OPPORTUNITY
  • 18.4 CHALLENGES
  • 18.5 PRODUCT DEVELOPERS

19 ELECTRONICS AND PHOTONICS

  • 19.1 Graphene and 2D materials in electronics
    • 19.1.1 Properties
    • 19.1.2 Applications
  • 19.2 FLEXIBLE ELECTRONICS, CONDUCTIVE FILMS AND DISPLAYS
    • 19.2.1 MARKET DRIVERS AND TRENDS
      • 19.2.1.1 ITO replacement for flexible electronics
      • 19.2.1.2 Growth in the wearable electronics market
      • 19.2.1.3 Touch technology requirements
    • 19.2.2 PROPERTIES AND APPLICATIONS
      • 19.2.2.1 Transparent electrodes in flexible electronics
      • 19.2.2.2 Electronic paper
    • 19.2.3 MARKET SIZE AND OPPORTUNITY
    • 19.2.4 CHALLENGES
      • 19.2.4.1 Competing materials
      • 19.2.4.2 Cost in comparison to ITO
      • 19.2.4.3 Problems with transfer and growth
      • 19.2.4.4 Improving sheet resistance
      • 19.2.4.5 Difficulties in display panel integration
    • 19.2.5 PRODUCT DEVELOPERS
  • 19.3 CONDUCTIVE INKS
    • 19.3.1 MARKET DRIVERS AND TRENDS
      • 19.3.1.1 Increased demand for printed electronics
      • 19.3.1.2 Limitations of existing conductive inks
    • 19.3.2 PROPERTIES AND APPLICATIONS
    • 19.3.3 MARKET SIZE AND OPPORTUNITY
    • 19.3.4 PRODUCT DEVELOPERS
  • 19.4 TRANSISTORS AND INTEGRATED CIRCUITS
    • 19.4.1 MARKET DRIVERS AND TRENDS
      • 19.4.1.1 Scaling
      • 19.4.1.2 Limitations of current materials
    • 19.4.2 PROPERTIES AND APPLICATIONS
      • 19.4.2.1 Graphene Radio Frequency (RF) circuits
      • 19.4.2.2 Graphene spintronics
    • 19.4.3 MARKET SIZE AND OPPORTUNITY
    • 19.4.4 CHALLENGES
      • 19.4.4.1 Competition from other materials
      • 19.4.4.2 Lack of band gap
      • 19.4.4.3 Transfer and integration
    • 19.4.5 PRODUCT DEVELOPERS
  • 19.5 MEMORY DEVICES
    • 19.5.1 MARKET DRIVERS AND TRENDS
      • 19.5.1.1 Density and voltage scaling
      • 19.5.1.2 Growth in the smartphone and tablet markets
      • 19.5.1.3 Growth in the flexible electronics market
    • 19.5.2 PROPERTIES AND APPLICATIONS
    • 19.5.3 MARKET SIZE AND OPPORTUNITY
    • 19.5.4 PRODUCT DEVELOPERS
  • 19.6 PHOTONICS
    • 19.6.1 MARKET DRIVERS AND TRENDS
      • 19.6.1.1 Increased bandwith at reduced cost
      • 19.6.1.2 Increasing sensitivity of photodetectors
    • 19.6.2 PROPERTIES AND APPLICATIONS
      • 19.6.2.1 Si photonics versus graphene
      • 19.6.2.2 Optical modulators
      • 19.6.2.3 Photodetectors
      • 19.6.2.4 Plasmonics
      • 19.6.2.5 Fiber lasers
    • 19.6.3 CHALLENGES
      • 19.6.3.1 Need to design devices that harness graphene's properties
      • 19.6.3.2 Problems with transfer
      • 19.6.3.3 THz absorbance and nonlinearity
      • 19.6.3.4 Stability and sensitivity
    • 19.6.4 PRODUCT DEVELOPERS

20 ENERGY STORAGE, CONVERSION AND EXPLORATION

  • 20.1 BATTERIES
    • 20.1.1 MARKET DRIVERS AND TRENDS
      • 20.1.1.1 Growth in electric vehicles market
      • 20.1.1.2 Continued growth in cellular phones market
      • 20.1.1.3 Reduce dependence on lithium
      • 20.1.1.4 Shortcomings of existing battery and supercapacitor technology
      • 20.1.1.5 Reduced costs for widespread application
      • 20.1.1.6 Power sources for flexible electronics
    • 20.1.2 PROPERTIES AND APPLICATIONS
      • 20.1.2.1 Lithium-ion batteries (LIB)
      • 20.1.2.2 Lithium-air batteries
      • 20.1.2.3 Sodium-ion batteries
    • 20.1.3 MARKET SIZE AND OPPORTUNITY
    • 20.1.4 CHALLENGES
  • 20.2 SUPERCAPACITORS
    • 20.2.1 MARKET DRIVERS AND TRENDS
      • 20.2.1.1 Reducing costs
      • 20.2.1.2 Demand from portable electronics
      • 20.2.1.3 Inefficiencies of standard battery technology
      • 20.2.1.4 Problems with activated carbon
    • 20.2.2 PROPERTIES AND APPLICATIONS
    • 20.2.3 MARKET SIZE AND OPPORTUNITY
    • 20.2.4 CHALLENGES
      • 20.2.4.1 Low energy storage capacity of graphene
  • 20.3 PHOTOVOLTAICS
    • 20.3.1 MARKET DRIVERS AND TRENDS
      • 20.3.1.1 Need to improve solar cell efficiency
      • 20.3.1.2 Reduce costs
      • 20.3.1.3 Varying environmental conditions
    • 20.3.2 PROPERTIES AND APPLICATIONS
      • 20.3.2.1 ITO replacement
      • 20.3.2.2 Graphene-silicon (Gr-Si) Schottky junction solar cells
      • 20.3.2.3 Halide perovskites/graphene hybrids
    • 20.3.3 MARKET SIZE AND OPPORTUNITY
  • 20.4 FUEL CELLS
    • 20.4.1 MARKET DRIVERS AND TRENDS
      • 20.4.1.1 Limitations of platinum
      • 20.4.1.2 Cost
    • 20.4.2 PROPERTIES AND APPLICATIONS
      • 20.4.2.1 Electrocatalyst supports
    • 20.4.3 MARKET SIZE AND OPPORTUNITY
    • 20.4.4 CHALLENGES
  • 20.5 LED LIGHTING AND UVC
    • 20.5.1 MARKET DRIVERS AND TRENDS
      • 20.5.1.1 Improving flexibility
      • 20.5.1.2 Improving performance and costs
    • 20.5.2 Properties and applications
    • 20.5.3 Market size
  • 20.6 OIL AND GAS
    • 20.6.1 MARKET DRIVERS AND TRENDS
      • 20.6.1.1 Cost
      • 20.6.1.2 Increased demands of drilling environments
      • 20.6.1.3 Environmental and regulatory
    • 20.6.2 PROPERTIES AND APPLICATIONS
      • 20.6.2.1 Sensing and reservoir management
      • 20.6.2.2 Coatings
      • 20.6.2.3 Drilling fluids
      • 20.6.2.4 Sorbent materials
      • 20.6.2.5 Catalysts
      • 20.6.2.6 Separation
    • 20.6.3 MARKET SIZE AND OPPORTUNITY
  • 20.7 PRODUCT DEVELOPERS

21 FILTRATION AND SEPARATION

  • 21.1 MARKET DRIVERS AND TRENDS
    • 21.1.1 Need for improved membrane technology
    • 21.1.2 Water shortage and population growth
    • 21.1.3 Contamination
    • 21.1.4 Cost
  • 21.2 PROPERTIES AND APPLICTIONS
    • 21.2.1 Water filtration
    • 21.2.2 Gas separation
    • 21.2.3 Photocatalytic absorbents
      • 21.3 MARKET SIZE AND OPPORTUNITY
      • 21.4 CHALLENGES
      • 21.5 PRODUCT DEVELOPERS

22 LUBRICANTS

  • 22.1 MARKET DRIVERS AND TRENDS
    • 22.1.1 Cost effective alternatives
    • 22.1.2 Need for higher-performing lubricants for fuel efficiency
    • 22.1.3 Environmental concerns
  • 22.2 PROPERTIES AND APPLICATIONS
  • 22.3 MARKET SIZE AND OPPORTUNITY
  • 22.4 CHALLENGES
  • 22.5 PRODUCT DEVELOPERS

23 SENSORS

  • 23.1 MARKET DRIVERS AND TRENDS
    • 23.1.1 Increased power and performance with reduced cost
    • 23.1.2 Enhanced sensitivity
    • 23.1.3 Replacing silver electrodes
    • 23.1.4 Growth in the home diagnostics and point of care market
    • 23.1.5 Improved thermal stability
    • 23.1.6 Environmental conditions
  • 23.2 PROPERTIES AND APPLICATIONS
    • 23.2.1 Infrared (IR) sensors
    • 23.2.2 Electrochemical and gas sensors
      • 23.2.2.1 Graphene foam
    • 23.2.3 Pressure sensors
    • 23.2.4 Biosensors
    • 23.2.5 Optical sensors
    • 23.2.6 Humidity sensors
    • 23.2.7 Strain sensors
    • 23.2.8 Acoustic sensors
    • 23.2.9 Wireless sensors
    • 23.2.10 Surface enhanced Raman scattering
  • 23.3 MARKET SIZE AND OPPORTUNITY
  • 23.4 Challenges
    • 23.4.1 Selectivity
    • 23.4.2 Scaling and manufacturing
    • 23.4.3 Sensor recovery
  • 23.5 PRODUCT DEVELOPERS

24 TEXTILES

  • 24.1 MARKET DRIVERS AND TRENDS
    • 24.1.1 Growth in the wearable electronics market
  • 24.2 PROPERTIES AND APPLICATONS
    • 24.2.1 Conductive coatings
  • 24.3 MARKET SIZE AND OPPORTUNITY
  • 24.4 PRODUCT DEVELOPERS

25 3D PRINTING

  • 25.1 MARKET DRIVERS AND TRENDS
    • 25.1.1 Improved materials at lower cost
  • 25.2 PROPERTIES AND APPLICATIONS
  • 25.3 MARKET SIZE AND OPPORTUNITY
  • 25.4 CHALLENGES
  • 25.5 PRODUCT DEVELOPERS

26 GRAPHENE PRODUCERS AND PRODUCT DEVELOPERS 501-666 (183 profiles)

TABLES

  • Table 1: Consumer products incorporating graphene
  • Table 2: Graphene target markets-Applications potential addressable market size
  • Table 3: Graphene producers annual production capacities
  • Table 4: Global production of graphene, 2010-2025 in tons/year Base year for projections is 2014
  • Table 5: Graphene types and cost per kg
  • Table 6: Categorization of nanomaterials
  • Table 7: Properties of graphene
  • Table 8: Graphene quantum dot producers
  • Table 9: Comparative properties of carbon materials
  • Table 10: Comparative properties of graphene with nanoclays and carbon nanotubes
  • Table 11: Competitive analysis of Carbon nanotubes and graphene by application area and potential impact by 2025
  • Table 12: Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2
  • Table 13: Markets and applications of phosphorene
  • Table 14: Markets and applications of C2N
  • Table 15: Markets and applications of germanene
  • Table 16: Markets and applications of graphdiyne
  • Table 17: Markets and applications of graphane
  • Table 18: Markets and applications of hexagonal boron-nitride
  • Table 19: Markets and applications of MoS2
  • Table 20: Markets and applications of Rhenium disulfide (ReS2) and diselenide (ReSe2)
  • Table 21: Markets and applications of silicene
  • Table 22: Markets and applications of stanene/tinene
  • Table 23: Markets and applications of tungsten diselenide
  • Table 24: Comparative analysis of graphene and other 2-D nanomaterials
  • Table 25: Large area graphene films-Markets, applications and current global market
  • Table 26: Graphene oxide flakes/graphene nanoplatelets-Markets, applications and current global market
  • Table 27: Main production and synthesis methods for graphene
  • Table 28: Pros and cons of CVD for graphene synthesis
  • Table 29: Pros and cons of exfoliation for graphene synthesis
  • Table 30: Pros and cons of epitaxial growth for graphene synthesis
  • Table 31: Pros and cons of liquid phase exfoliation for graphene synthesis
  • Table 32: Pros and cons of micromechanical cleavage for graphene synthesis
  • Table 33: Graphene synthesis methods, by company
  • Table 34: Graphene market structure
  • Table 35: Published patent publications for graphene, 2004-2014
  • Table 36: Leading graphene patentees
  • Table 37: Industrial graphene patents in 2014
  • Table 38: Potential market penetration and volume estimates (tons) for graphene in key applications
  • Table 39: Global production of graphene, 2010-2025 in tons/year Base year for projections is 2014
  • Table 40: Graphene producers and production capacity (Current and projected), prices and target markets
  • Table 41: Graphene properties relevant to application in adhesives
  • Table 42: Graphene and 2D materials in the adhesives market-applications, stage of commercialization and estimated economic impact
  • Table 43: Graphene product and application developers in the adhesives industry
  • Table 44: Graphene and 2D materials in the aerospace market-applications, stage of commercialization and estimated economic impact
  • Table 45: Graphene product and application developers in the aerospace industry
  • Table 46: Graphene in the automotive market-applications, stage of commercialization and addressable market size
  • Table 47: Graphene and 2D materials in the automotive market-applications, stage of commercialization and estimated economic impact
  • Table 48: Graphene product and application developers in the automotive industry
  • Table 49: Graphene properties relevant to application in biomedicine and healthcare
  • Table 50: Graphene and 2D materials in the biomedical & healthcare markets-applications, stage of commercialization and estimated economic impact
  • Table 51: Graphene product and application developers in the biomedical and healthcare industry
  • Table 52: Properties of nanocoatings
  • Table 53: Graphene properties relevant to application in coatings
  • Table 54: Markets for nanocoatings
  • Table 55: Graphene and 2D materials in the coatings market-applications, stage of commercialization and estimated economic impact
  • Table 56: Graphene product and application developers in the coatings industry
  • Table 57: Graphene properties relevant to application in polymer composites
  • Table 58: Potential addressable market size for carbon nanomaterials composites in tons
  • Table 59: Graphene and 2D materials in the composites market-applications, stage of commercialization and estimated economic impact
  • Table 60: Graphene product and application developers in the composites industry
  • Table 61: Graphene and 2D materials in the electronics and photonics market-applications, stage of commercialization and estimated economic impact
  • Table 62: Comparison of ITO replacements
  • Table 63: Graphene product and application developers in transparent conductive films
  • Table 64: Comparative properties of conductive inks
  • Table 65: Opportunities for graphene and 2D materials in printed electronics
  • Table 66: Graphene product and application developers in conductive inks
  • Table 67: Graphene product and application developers in transistors and integrated circuits
  • Table 68: Graphene product and application developers in memory devices
  • Table 69: Graphene properties relevant to application in optical modulators
  • Table 70: Graphene product and application developers in photonics 410
  • Table 71: Graphene and 2D materials in the energy storage, conversion and exploration market-applications, stage of commercialization and estimated economic impact
  • Table 72: Comparative properties of graphene supercapacitors and lithium-ion batteries
  • Table 73: Graphene product and application developers in the energy industry
  • Table 74: Graphene and 2D materials in the filtration and separation market-applications, stage of commercialization and estimated economic impact
  • Table 75: Graphene product and application developers in the filtration industry
  • Table 76: Applications of carbon nanomaterials in lubricants
  • Table 77: Graphene product and application developers in the lubricants industry
  • Table 78: Graphene properties relevant to application in sensors
  • Table 79: Comparison of ELISA (enzyme-linked immunosorbent assay) and graphene biosensor
  • Table 80: Graphene and 2D materials in the sensors market-applications, stage of commercialization and estimated economic impact
  • Table 81: Graphene product and application developers in the sensors industry
  • Table 82: Desirable functional properties for the textiles industry afforded by the use of nanomaterials
  • Table 83: Graphene and 2D materials in the textiles market-applications, stage of commercialization and estimated economic impact
  • Table 84: Graphene product and application developers in the textiles industry
  • Table 85: Graphene properties relevant to application in 3D printing
  • Table 86: Graphene and 2D materials in the textiles market-applications, stage of commercialization and estimated economic impact
  • Table 87: Graphene product and application developers in the 3D printing industry
  • Table 88: Graphene producers and types produced
  • Table 89: Graphene industrial collaborations and target markets

FIGURES

  • Figure 1: Demand for graphene, by market, 2015
  • Figure 2: Demand for graphene, by market, 2015
  • Figure 3: Global government funding for graphene in millions USD
  • Figure 4: Global market for graphene 2010-2025 in tons/year
  • Figure 5: Global consumption of graphene 2015, by region
  • Figure 6: Graphene layer structure schematic
  • Figure 7: Graphite and graphene
  • Figure 8: Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene
  • Figure 9: Schematic of (a) CQDs and (c) GQDs HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1-4)
  • Figure 10: Graphene quantum dots
  • Figure 11: Graphene can be rolled up into a carbon nanotube, wrapped into a fullerene, and stacked into graphite
  • Figure 12: Black phosphorus structure
  • Figure 13: Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal
  • Figure 14: Schematic of germanene
  • Figure 15: Graphdiyne structure
  • Figure 16: Schematic of Graphane crystal
  • Figure 17: Structure of hexagonal boron nitride
  • Figure 18: Structure of 2D molybdenum disulfide
  • Figure 19: Atomic force microscopy image of a representative MoS2 thin-film transistor
  • Figure 20: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge
  • Figure 21: Schematic of a monolayer of rhenium disulphide
  • Figure 22: Silicene structure
  • Figure 23: Monolayer silicene on a silver (111) substrate
  • Figure 24: Silicene transistor
  • Figure 25: Crystal structure for stanene
  • Figure 26: Atomic structure model for the 2D stanene on Bi2Te3(111)
  • Figure 27: Schematic of tungsten diselenide
  • Figure 28: Graphene synthesis methods
  • Figure 29: TEM micrographs of: A) HR-CNFs; B) GANF® HR-CNF, it can be observed its high graphitic structure; C) Unraveled ribbon from the HR-CNF; D) Detail of the ribbon; E) Scheme of the structure of the HR-CNFs; F) Large single graphene oxide sheets derived from GANF
  • Figure 30: Graphene nanoribbons grown on germanium
  • Figure 31: Methods of synthesizing high-quality graphene
  • Figure 32: Roll-to-roll graphene production process
  • Figure 33: Schematic of roll-to-roll manufacturing process
  • Figure 34: Microwave irradiation of graphite to produce single-layer graphene
  • Figure 35: Schematic of typical commercialization route for graphene producer
  • Figure 36: Published patent publications for graphene, 2004-2014
  • Figure 37: Technology Readiness Level (TRL) for graphene
  • Figure 38: Global market for graphene 2010-2025 in tons/year
  • Figure 39: Graphene-based automotive components
  • Figure 40: Graphene Frontiers' Six™ chemical sensors consists of a field effect transistor (FET) with a graphene channel Receptor molecules, such as DNA, are attached directly to the graphene channel
  • Figure 41: Graphene-Oxide based chip prototypes for biopsy-free early cancer diagnosis
  • Figure 42: Heat transfer coating developed at MIT
  • Figure 43: Water permeation through a brick without (left) and with (right) "graphene paint" coating
  • Figure 44: Four layers of graphene oxide coatings on polycarbonate
  • Figure 45: Global Paints and Coatings Market, share by end user market
  • Figure 46: Flexible organic light emitting diode (OLED) using graphene electrode
  • Figure 47: Graphene electrochromic devices Top left: Exploded-view illustration of the graphene electrochromic device The device is formed by attaching two graphene-coated PVC substrates face-to-face and filling the gap with a liquid ionic electrolyte
  • Figure 48: Flexible transistor sheet
  • Figure 49: Foldable graphene E-paper
  • Figure 50: A large transparent conductive graphene film (about 20 × 20 cm2) manufactured by 2D Carbon Tech
  • Figure 24a (right): Prototype of a mobile phone produced by 2D Carbon Tech using a graphene touch panel
  • Figure 51: Schematic of the wet roll-to-roll graphene transfer from copper foils to polymeric substrates
  • Figure 52: The transmittance of glass/ITO, glass/ITO/four organic layers, and glass/ITO/four organic layers/4-layer graphene
  • Figure 53: Graphene printed antenna
  • Figure 54: BGT Materials graphene ink product
  • Figure 55: Vorbeck Materials conductive ink products
  • Figure 56: Graphene IC in wafer tester
  • Figure 57: Schematic cross-section of a graphene based transistor (GBT, left) and a graphene field-effect transistor (GFET, right)
  • Figure 58: Graphene oxide-based RRAm device on a flexible substrate
  • Figure 59: Layered structure of tantalum oxide, multilayer graphene and platinum used for resistive random access memory (RRAM)
  • Figure 60: A schematic diagram for the mechanism of the resistive switching in metal/GO/Pt
  • Figure 61: Hybrid graphene phototransistors
  • Figure 62: Wearable health monitor incorporating graphene photodetectors
  • Figure 63: Skeleton Technologies ultracapacitor
  • Figure 64: Zapgo supercapacitor phone charger
  • Figure 65: Solar cell with nanowires and graphene electrode
  • Figure 66: Schematic of boron doped graphene for application in gas sensors
  • Figure 67: An uncoated copper condenser tube (top left) is shown next to a similar tube coated with graphene (top right)
  • Figure 68: Directa Plus Grafysorber
  • Figure 69: Nanometer-scale pores in single-layer freestanding graphene membrane can effectively filter NaCl salt from water
  • Figure 70: Perforene graphene filter
  • Figure 71: Degradation of organic dye molecules by graphene hybrid composite photocatalysts
  • Figure 72: GFET sensors
  • Figure 73: First generation point of care diagnostics
  • Figure 74: Graphene Field Effect Transistor Schematic
  • Figure 75: 3D Printed tweezers incorporating Carbon Nanotube Filament
Back to Top