表紙
市場調査レポート

世界のカーボンナノチューブ・グラフェン・その他2-Dナノマテリアル市場

The Global Market For Carbon Nanotubes, Graphene And Other 2-D Nanomaterials

発行 Future Markets, Inc. 商品コード 309843
出版日 ページ情報 英文 755 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=101.50円で換算しております。
Back to Top
世界のカーボンナノチューブ・グラフェン・その他2-Dナノマテリアル市場 The Global Market For Carbon Nanotubes, Graphene And Other 2-D Nanomaterials
出版日: 2015年10月30日 ページ情報: 英文 755 Pages
概要

CNT (カーボンナノチューブ) およびグラフェンは、重量当たりの性能がその他の材料よりも優れ、最も丈夫で軽い導電繊維として知られています。これらは透明導電体およびバッテリー添加剤として、優れた電子、熱、および機械的特徴から珍重されており、SWNT(単層カーボンナノチューブ)およびグラフェンは今後数年以内に、これらの部門で支配権を争うと見込まれています。

当レポートでは、世界のカーボンナノチューブ、グラフェン、およびその他の2-Dナノマテリアル市場について調査し、生産量、比較分析、各部門におけるカーボンナノチューブ・グラフェンの評価、および企業プロファイルなどに関する情報をまとめ、お届けいたします。

第1章 調査手法

第2章 エグゼクティブサマリー

  • カーボンナノチューブ
  • グラフェン

第3章 イントロダクション

  • ナノマテリアルの特徴
  • 分類
  • カーボンナノチューブ
  • グラフェン
  • カーボンナノチューブ vs. グラフェン
  • その他の2Dマテリアル

第4章 カーボンナノチューブの合成

  • アーク放電合成
  • 化学蒸着 (CVD)
  • プラズマ化学気相堆積法 (PECVD)
  • 高圧一酸化炭素合成
  • 火炎合成
  • レーザーアブレーション合成
  • モノシラン溶液法
  • グラフェン合成

第5章 カーボンナノチューブ市場構造

第6章 グラフェン市場構造

第7章 規制・基準

  • 基準
  • 環境、健康および安全基準
  • 職場における暴露

第8章 塗料・出版

  • カーボンナノチューブ
  • グラフェン

第9章 技術即応度

第10章 エンドユーザー市場区分の分析

  • カーボンナノチューブ生産量
  • グラフェン生産量
  • カーボンナノチューブ産業のニュース
  • グラフェン産業のニュース
  • カーボンナノチューブメーカー・生産能力
  • グラフェンメーカー・生産の雨量
  • エレクトロニクス・フォトニクス
  • 高分子複合材料
  • 航空宇宙
  • 自動車
  • バイオ医療 & 医療
  • 塗料
  • ろ過・分離
  • エネルギー貯蔵、変換および探査
    • バッテリー
    • スーパーコンデンサー
    • 太陽光発電 (PV)
    • 燃料電池
    • LED照明・UVC
    • 石油・ガス
    • 製品ディベロッパー
  • センサー
  • 3Dプリント
  • 接着剤
  • 潤滑剤
  • テキスタイル

第11章 カーボンナノチューブメーカー・製品ディベロッパー (184社)

第12章 グラフェンカーボンナノチューブメーカー・製品ディベロッパー (152社)

図表

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

This is a golden era for carbon research with academics pursuing the perfect analysis tools for these nanomaterials whilst simultaneously evaluating the growing variants of each sub family and how they must be processed to ensure their potential properties are married to the systems they could enhance.

CNTs and graphene are the strongest, lightest and most conductive fibres known to man, with a performance-per-weight greater than any other material. In direct competition in a number of markets, they are complementary in others.

Once the most promising of all nanomaterials, CNTs face stiff competition in conductive applications from graphene and other 2D materials and in mechanically enhanced composites from nanocellulose. However, after considerable research efforts, numerous multi-walled carbon nanotubes (MWNTs)-enhanced products are commercially available. Super-aligned CNT arrays, films and yarns have found applications in consumer electronics, batteries, polymer composites, aerospace, sensors, heaters, filters and biomedicine. Large-scale industrial production of single-walled carbon nanotubes (SWNTs) has been initiated, promising new market opportunities in transparent conductive films, transistors, sensors and memory devices. SWNTs are regarded as one of the most promising candidates to utilized as building blocks in next generation electronics. Other 2-D nanomaterials are also coming to the fore.

This 736 page report on the carbon nanomaterials market includes:

  • Production volumes, estimated to 2025
  • Application timescales
  • Carbon nanotubes and graphene products
  • Comparative analysis of carbon nanotubes and graphene
  • Assessment of carbon nanotubes and graphene market in sectors including energy, aerospace, automotive, biomedical, coatings, composites, electronics and electronic devices, photonics, sensors, filtration, adhesives, catalysts and textiles
  • Assessment of 2-D nanomaterials such Silicene, Graphdiyne, Molybdenum disulfide, Graphane and Germanane
  • Company profiles of carbon nanotubes and graphene producers and product developers, including products, target markets and contact details

Table of Contents

1. RESEARCH METHODOLOGY

2. EXECUTIVE SUMMARY

  • 2.1. CARBON NANOTUBES
    • 2.1.1. Exceptional properties
    • 2.1.2. Products and applications
    • 2.1.3. Threat from the graphene market
    • 2.1.4. Production
      • 2.1.4.1. Multi-walled nanotube (MWNT) production
      • 2.1.4.2. Single-walled nanotube (SWNT) production
    • 2.1.5. Global demand for carbon nanotubes
      • 2.1.5.1. Current products
      • 2.1.5.2. Future products
    • 2.1.6. Market drivers and trends
      • 2.1.6.1. Electronics
    • 2.1.7. Market and production challenges
      • 2.1.7.1. Safety issues
      • 2.1.7.2. Dispersion
      • 2.1.7.3. Synthesis and supply quality
      • 2.1.7.4. Cost
      • 2.1.7.5. Competition from other materials
  • 2.2. GRAPHENE
    • 2.2.1. Remarkable properties
    • 2.2.2. Global funding
    • 2.2.3. Products and applications
    • 2.2.4. Production
    • 2.2.5. Market drivers and trends
      • 2.2.5.1. Production exceeds demand
      • 2.2.5.2. Market revenues remain small but are growing
      • 2.2.5.3. Scalability and cost
      • 2.2.5.4. Applications hitting the market
      • 2.2.5.5. Wait and see?
      • 2.2.5.6. Asia and US lead the race
      • 2.2.5.7. Competition from other materials
    • 2.2.6. Market and technical challenges
      • 2.2.6.1. Supply quality
      • 2.2.6.2. Cost
      • 2.2.6.3. Product integration
      • 2.2.6.4. Regulation and standards

3. INTRODUCTION

  • 3.1. Properties of nanomaterials
  • 3.2. Categorization
  • 3.3. CARBON NANOTUBES
    • 3.3.1. Multi-walled nanotubes (MWNT)
    • 3.3.2. Single-wall carbon nanotubes (SWNT)
      • 3.3.2.1. Single-chirality
    • 3.3.3. Double-walled carbon nanotubes (DWNTs)
    • 3.3.4. Few-walled carbon nanotubes (FWNTs)
    • 3.3.5. Carbon Nanohorns (CNHs)
    • 3.3.6. Fullerenes
    • 3.3.7. Boron Nitride nanotubes (BNNTs)
    • 3.3.8. Properties
    • 3.3.9. Applications of carbon nanotubes
      • 3.3.9.1. High volume applications
      • 3.3.9.2. Low volume applications
      • 3.3.9.3. Novel applications
  • 3.4. GRAPHENE
    • 3.4.1. 3D Graphene
    • 3.4.2. Graphene Quantum Dots
    • 3.4.3. Properties
  • 3.5. CARBON NANOTUBES VERSUS GRAPHENE
    • 3.5.1. Cost and production
    • 3.5.2. Carbon nanotube-graphene hybrids
  • 3.6. OTHER 2D MATERIALS
    • 3.6.1. Phosphorene
      • 3.6.1.1. Properties
      • 3.6.1.2. Applications
      • 3.6.1.3. Recent research news
    • 3.6.2. Silicene
      • 3.6.2.1. Properties
      • 3.6.2.2. Applications
      • 3.6.2.3. Recent research news
    • 3.6.3. Molybdenum disulfide
      • 3.6.3.1. Properties
      • 3.6.3.2. Applications
      • 3.6.3.3. Recent research news
    • 3.6.4. Hexagonal boron nitride
      • 3.6.4.1. Properties
      • 3.6.4.2. Applications
      • 3.6.4.3. Recent research news
    • 3.6.5. Germanene
      • 3.6.5.1. Properties
      • 3.6.5.2. Applications
      • 3.6.5.3. Recent research news
    • 3.6.6. Graphdiyne
      • 3.6.6.1. Properties
      • 3.6.6.2. Applications
    • 3.6.7. Graphane
      • 3.6.7.1. Properties
      • 3.6.7.2. Applications
    • 3.6.8. Stanene/tinene
      • 3.6.8.1. Properties
      • 3.6.8.2. Applications
    • 3.6.9. Tungsten diselenide
      • 3.6.9.1. Properties
      • 3.6.9.2. Applications
    • 3.6.10. Rhenium disulphide
      • 3.6.10.1. Properties
      • 3.6.10.2. Applications

4. CARBON NANOTUBE SYNTHESIS

  • 4.1. Arc discharge synthesis
  • 4.2. Chemical Vapor Deposition (CVD)
  • 4.3. Plasma enhanced chemical vapor deposition (PECVD)
  • 4.4. High-pressure carbon monoxide synthesis
    • 4.4.1.1. High Pressure CO (HiPco)
    • 4.4.2. CoMoCAT
  • 4.5. Flame synthesis
  • 4.6. Laser ablation synthesis
  • 4.7. Silane solution method
  • 4.8. GRAPHENE SYNTHESIS
    • 4.8.1. Large area graphene films
    • 4.8.2. Graphene oxide flakes and graphene nanoplatelets
    • 4.8.3. Production methods
      • 4.8.3.1. Quality
      • 4.8.3.2. Industrial scale production
      • 4.8.3.3. Graphene nanoplatelets (GNPs)
      • 4.8.3.4. Graphene Nanoribbons
      • 4.8.3.5. Large-area graphene films
      • 4.8.3.6. Graphene oxide flakes (GO)
      • 4.8.3.7. Pros and cons of graphene production methods
      • 4.8.3.8. Recent synthesis methods
      • 4.8.3.9. Synthesis methods by company

5. CARBON NANOTUBES MARKET STRUCTURE

6. GRAPHENE MARKET STRUCTURE

7. REGULATIONS AND STANDARDS

  • 7.1. Standards
  • 7.2. Environmental, health and safety regulation
    • 7.2.1. Europe
    • 7.2.2. United States
    • 7.2.3. Asia
  • 7.3. Workplace exposure

8. PATENTS AND PUBLICATIONS

  • 8.1. Carbon nanotubes
  • 8.2. Graphene
    • 8.2.1. Fabrication processes
    • 8.2.2. Academia
    • 8.2.3. Regional leaders

9. TECHNOLOGY READINESS LEVEL

10. END USER MARKET SEGMENT ANALYSIS

  • 10.1. Carbon nanotubes production volumes 2010-2025
    • 10.1.1. Regional demand for carbon nanotubes
      • 10.1.1.1. Japan
      • 10.1.1.2. China
    • 10.1.2. Main carbon nanotubes producers
    • 10.1.3. SWNT production
      • 10.1.3.1. OCSiAl
      • 10.1.3.2. FGV Cambridge Nanosystems
      • 10.1.3.3. Zeon Corporation
    • 10.1.4. Price of carbon nanotubes-MWNTs, SWNTs and FWNTs
  • 10.2. Graphene production volumes 2010-2025
  • 10.3. Carbon nanotubes industry news 2013-2015
  • 10.4. Graphene industry news 2013-2015
  • 10.5. Carbon nanotubes producers and production capacities
  • 10.6. Graphene producers and production capacities
  • 10.7. ELECTRONICS AND PHOTONICS
    • 10.7.1. TRANSPARENT CONDUCTIVE FILMS AND DISPLAYS
      • 10.7.1.1. MARKET DRIVERS AND TRENDS
      • 10.7.1.2. MARKET SIZE AND OPPORTUNITY
      • 10.7.1.3. Properties and applications
      • 10.7.1.4. CHALLENGES
      • 10.7.1.5. PRODUCT DEVELOPERS
    • 10.7.2. CONDUCTIVE INKS
      • 10.7.2.1. MARKET DRIVERS AND TRENDS
      • 10.7.2.2. MARKET SIZE AND OPPORTUNITY
      • 10.7.2.3. PROPERTIES AND APPLICATIONS
      • 10.7.2.4. PRODUCT DEVELOPERS
    • 10.7.3. TRANSISTORS AND INTEGRATED CIRCUITS
      • 10.7.3.1. MARKET DRIVERS AND TRENDS
      • 10.7.3.2. MARKET SIZE AND OPPORTUNITY
      • 10.7.3.3. PROPERTIES AND APPLICATIONS
      • 10.7.3.4. CHALLENGES
      • 10.7.3.5. PRODUCT DEVELOPERS
    • 10.7.4. MEMORY DEVICES
      • 10.7.4.1. MARKET DRIVERS AND TRENDS
      • 10.7.4.2. MARKET SIZE AND OPPORTUNITY
      • 10.7.4.3. PROPERTIES AND APPLICATIONS
      • 10.7.4.4. PRODUCT DEVELOPERS
    • 10.7.5. PHOTONICS
      • 10.7.5.1. Optical modulators
      • 10.7.5.2. Photodetectors
      • 10.7.5.3. Plasmonics
      • 10.7.5.4. Challenges
  • 10.8. POLYMER COMPOSITES
    • 10.8.1. MARKET DRIVERS AND TRENDS
      • 10.8.1.1. Improved performance
      • 10.8.1.2. Multi-functionality
      • 10.8.1.3. Growth in wind energy market
    • 10.8.2. MARKET SIZE AND OPPORTUNITY
    • 10.8.3. PROPERTIES AND APPLICATIONS
      • 10.8.3.1. Carbon nanotubes
      • 10.8.3.2. Graphene
    • 10.8.4. CHALLENGES
      • 10.8.4.1. Carbon nanotubes
      • 10.8.4.2. Graphene
    • 10.8.5. PRODUCT DEVELOPERS
      • 10.8.5.1. Carbon nanotubes
      • 10.8.5.2. Graphene
  • 10.9. AEROSPACE
    • 10.9.1. MARKET DRIVERS AND TRENDS
      • 10.9.1.1. Safety
      • 10.9.1.2. Reduced fuel consumption and costs
      • 10.9.1.3. Increased durability
      • 10.9.1.4. Multi-functionality
      • 10.9.1.5. Need for new de-icing solutions
      • 10.9.1.6. Weight reduction
    • 10.9.2. MARKET SIZE AND OPPORTUNITY
    • 10.9.3. PROPERTIES AND APPLICATIONS
      • 10.9.3.1. Composites
      • 10.9.3.2. Coatings
      • 10.9.3.3. Sensors
    • 10.9.4. PRODUCT DEVELOPERS
      • 10.9.4.1. Carbon nanotubes
      • 10.9.4.2. Graphene
  • 10.10. AUTOMOTIVE
    • 10.10.1. MARKET DRIVER AND TRENDS
      • 10.10.1.1. Environmental
      • 10.10.1.2. Safety
      • 10.10.1.3. Lightweighting
      • 10.10.1.4. Cost
    • 10.10.2. MARKET SIZE AND OPPORTUNITY
    • 10.10.3. PROPERTIES AND APPLICATIONS
      • 10.10.3.1. Composites
      • 10.10.3.2. Lithium-ion batteries in electric and hybrid vehicles
      • 10.10.3.3. Coatings
    • 10.10.4. PRODUCT DEVELOPERS
      • 10.10.4.1. Carbon nanotubes
      • 10.10.4.2. Graphene
  • 10.11. BIOMEDICAL & HEALTHCARE
    • 10.11.1. MARKET DRIVERS AND TRENDS
      • 10.11.1.1. Improved drug delivery for cancer therapy
      • 10.11.1.2. Shortcomings of chemotherapies
      • 10.11.1.3. Biocompatibility of medical implants
      • 10.11.1.4. Anti-biotic resistance
      • 10.11.1.5. Growth in advanced woundcare market
    • 10.11.2. MARKET SIZE AND OPPORTUNITY
    • 10.11.3. PROPERTIES AND APPLICATIONS
      • 10.11.3.1. Cancer therapy
      • 10.11.3.2. Medical implants and devices
      • 10.11.3.3. Wound dressings
      • 10.11.3.4. Biosensors
      • 10.11.3.5. Medical imaging
      • 10.11.3.6. Tissue engineering
      • 10.11.3.7. Dental
    • 10.11.4. CHALLENGES
    • 10.11.5. PRODUCT DEVELOPERS
      • 10.11.5.1. Carbon nanotubes
      • 10.11.5.2. Graphene
  • 10.12. COATINGS
    • 10.12.1. MARKET DRIVERS AND TRENDS
      • 10.12.1.1. Sustainability and regulation
      • 10.12.1.2. Cost of corrosion
      • 10.12.1.3. Improved hygiene
      • 10.12.1.4. Cost of weather-related damage
    • 10.12.2. MARKET SIZE AND OPPORTUNITY
    • 10.12.3. PROPERTIES AND APPLICATIONS
      • 10.12.3.1. Anti-static coatings
      • 10.12.3.2. Anti-corrosion coatings
      • 10.12.3.3. Anti-microbial
      • 10.12.3.4. Anti-icing
      • 10.12.3.5. Barrier coatings
      • 10.12.3.6. Heat protection
      • 10.12.3.7. Anti-fouling
      • 10.12.3.8. Wear-resistance
      • 10.12.3.9. Smart windows
    • 10.12.4. PRODUCT DEVELOPERS
      • 10.12.4.1. Carbon nanotubes
      • 10.12.4.2. Graphene
  • 10.13. FILTRATION AND SEPARATION
    • 10.13.1. MARKET DRIVERS AND TRENDS
      • 10.13.1.1. Need for improved membrane technology
      • 10.13.1.2. Water shortage and population growth
      • 10.13.1.3. Contamination
      • 10.13.1.4. Cost
    • 10.13.2. MARKET SIZE AND OPPORTUNITY
    • 10.13.3. PROPERTIES AND APPLICTIONS
      • 10.13.3.1. Carbon nanotubes
      • 10.13.3.2. Graphene
    • 10.13.4. CHALLENGES
      • 10.13.4.1. Uniform pore size and distribution
      • 10.13.4.2. Reducing pore size for improved desalination
      • 10.13.4.3. Difficulties of CNT growth
      • 10.13.4.4. Cost
    • 10.13.5. PRODUCT DEVELOPERS
      • 10.13.5.1. Carbon nanotubes
      • 10.13.5.2. Graphene
  • 10.14. ENERGY STORAGE, CONVERSION AND EXPLORATION
    • 10.14.1. BATTERIES
      • 10.14.1.1. MARKET DRIVERS AND TRENDS
      • 10.14.1.2. MARKET SIZE AND OPPORTUNITY
      • 10.14.1.3. PROPERTIES AND APPLICATIONS
      • 10.14.1.4. CHALLENGES
    • 10.14.2. SUPERCAPACITORS
      • 10.14.2.1. MARKET DRIVERS AND TRENDS
      • 10.14.2.2. Problems with activated carbon
      • 10.14.2.3. MARKET SIZE AND OPPORTUNITY
      • 10.14.2.4. PROPERTIES AND APPLICATIONS
      • 10.14.2.5. Challenges
    • 10.14.3. PHOTOVOLTAICS
      • 10.14.3.1. MARKET DRIVERS AND TRENDS
      • 10.14.3.2. MARKET SIZE AND OPPORTUNITY
      • 10.14.3.3. PROPERTIES AND APPLICATIONS
    • 10.14.4. FUEL CELLS
      • 10.14.4.1. MARKET DRIVERS
      • 10.14.4.2. MARKET SIZE AND OPPORTUNITY
      • 10.14.4.3. PROPERTIES AND APPLICATIONS
      • 10.14.4.4. Challenges
    • 10.14.5. LED LIGHTING AND UVC
      • 10.14.5.1. Market drivers and trends
      • 10.14.5.2. Market size
      • 10.14.5.3. Properties and applications
    • 10.14.6. OIL AND GAS
      • 10.14.6.1. MARKET DRIVERS AND TRENDS
      • 10.14.6.2. MARKET SIZE AND OPPORTUNITY
      • 10.14.6.3. PROPERTIES AND APPLICATIONS
    • 10.14.7. PRODUCT DEVELOPERS
      • 10.14.7.1. Carbon nanotubes
      • 10.14.7.2. Graphene
  • 10.15. SENSORS
    • 10.15.1. MARKET DRIVERS AND TRENDS
      • 10.15.1.1. Increased power and performance with reduced cost
      • 10.15.1.2. Enhanced sensitivity
      • 10.15.1.3. Replacing silver electrodes
      • 10.15.1.4. Growth in the home diagnostics and point of care market
      • 10.15.1.5. Improved thermal stability
      • 10.15.1.6. Environmental conditions
    • 10.15.2. MARKET SIZE AND OPPORTUNITY
    • 10.15.3. PROPERTIES AND APPLICATIONS
      • 10.15.3.1. Infrared (IR) sensors
      • 10.15.3.2. Electrochemical and gas sensors
      • 10.15.3.3. Pressure sensors
      • 10.15.3.4. Biosensors
      • 10.15.3.5. Optical sensors
      • 10.15.3.6. Humidity sensors
      • 10.15.3.7. Acoustic sensors
      • 10.15.3.8. Wireless sensors
    • 10.15.4. Challenges
    • 10.15.5. PRODUCT DEVELOPERS
      • 10.15.5.1. Carbon nanotubes
      • 10.15.5.2. Graphene
  • 10.16. 3D PRINTING
    • 10.16.1. MARKET DRIVERS AND TRENDS
      • 10.16.1.1. Improved materials at lower cost
    • 10.16.2. MARKET SIZE AND OPPORTUNITY
    • 10.16.3. PROPERTIES AND APPLICATIONS
    • 10.16.4. CHALLENGES
    • 10.16.5. PRODUCT DEVELOPERS
      • 10.16.5.1. Carbon nanotubes
      • 10.16.5.2. Graphene
  • 10.17. ADHESIVES
    • 10.17.1. MARKET DRIVERS AND TRENDS
      • 10.17.1.1. Thermal management in electronics
      • 10.17.1.2. Environmental sustainability
      • 10.17.1.3. PROPERTIES AND APPLICATIONS
    • 10.17.2. MARKET SIZE AND OPPORTUNITY
    • 10.17.3. PRODUCT DEVELOPERS
      • 10.17.3.1. Carbon nanotubes
      • 10.17.3.2. Graphene
  • 10.18. LUBRICANTS
    • 10.18.1. MARKET DRIVERS AND TRENDS
      • 10.18.1.1. Cost effective alternatives
      • 10.18.1.2. Need for higher-performing lubricants for fuel efficiency
      • 10.18.1.3. Environmental concerns
    • 10.18.2. PROPERTIES AND APPLICATIONS
    • 10.18.3. MARKET SIZE AND OPPORTUNITY
    • 10.18.4. CHALLENGES
    • 10.18.5. PRODUCT DEVELOPERS
      • 10.18.5.1. Carbon nanotubes
      • 10.18.5.2. Graphene
  • 10.19. TEXTILES
    • 10.19.1. MARKET DRIVERS AND TRENDS
      • 10.19.1.1. Growth in the wearable electronics market
    • 10.19.2. PROPERTIES AND APPLICATONS
      • 10.19.2.1. Wearable electronics
      • 10.19.2.2. Superhydrophobic coatings
      • 10.19.2.3. Conductive coatings
      • 10.19.2.4. Flame retardant textiles
    • 10.19.3. MARKET SIZE AND OPPORTUNITY
    • 10.19.4. PRODUCT DEVELOPERS

11. CARBON NANOTUBES PRODUCERS AND PRODUCT DEVELOPERS (184 company profiles)

12. GRAPHENE PRODUCERS AND PRODUCT DEVELOPERS 607 (152 company profiles)

TABLES AND FIGURES

  • Figure 1: Molecular structures of SWNT and MWNT
  • Table 1: Properties of CNTs and comparable materials
  • Table 2: Carbon nanotubes target markets-Applications, stage of commercialization and potential addressable market size
  • Table 3: Annual production capacity of MWNT and SWNT producers
  • Table 4: SWNT producers production capacities 2014
  • Figure 2: Production capacities for SWNTs in kilograms, 2005- 2014
  • Table 5: Global production of carbon nanotubes, 2010-2025 in tons/year. Base year for projections is 2014
  • Figure 3: Global production of carbon nanotubes, 2010-2025 in tons/year. Base year for projections is 2014
  • Figure 4: Global government funding for graphene
  • Table 6: Graphene target markets-Applications, stage of commercialization and potential addressable market size
  • Table 7: Graphene production plants worldwide, by country, and production capacity
  • Table 8: Global production of graphene, 2010-2025 in tons/year. Base year for projections is 2014
  • Figure 5: Global market for graphene 2010-2025 in tons/year
  • Table 6: Graphene types and cost per kg
  • Table 7: Categorization of nanomaterials
  • Figure 6: Conceptual diagram of single-walled carbon nanotube (SWNT) (A) and multi-walled carbon nanotubes (MWNT) (B) showing typical dimensions of length, width, and separation distance between graphene layers in MWNTs
  • Figure 7: Schematic of single-walled carbon nanotube
  • Table 8: Comparison between single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes
  • Figure 8: Double-walled carbon nanotube bundle cross-section micrograph and model
  • Figure 9: Schematic representation of carbon nanohorns
  • Figure 10: Fullerene schematic
  • Figure 11: Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red
  • Table 9: Properties of carbon nanotubes
  • Figure 12: Graphene layer structure schematic
  • Figure 13: Graphite and graphene
  • Figure 14: Graphene and its descendants
  • Table 10: Properties of graphene
  • Table 11: Comparative properties of carbon materials
  • Table 12: Comparative properties of graphene with nanoclays and carbon nanotubes
  • Figure 15: Phosphorene structure
  • Table 13: Recent phosphorene research news
  • Figure 16: Silicene structure
  • Table 14: Recent silicene research news
  • Figure 17: Structure of 2D molybdenum disulfide
  • Figure 18: Atomic force microscopy image of a representative MoS2 thin-film transistor
  • Figure 19: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge
  • Table 15: Recent Molybdenum disulfide research news
  • Figure 20: Structure of hexagonal boron nitride
  • Table 16: Recent hexagonal boron nitride research news
  • Figure 21: Schematic of germanane
  • Table 17: Recent germanane research news
  • Figure 22: Graphdiyne structure
  • Figure 23: Schematic of Graphane crystal
  • Figure 24: Crystal structure for stanene
  • Figure 25: Schematic of tungsten diselenide
  • Figure 26: Schematic of a monolayer of rhenium disulphide
  • Table 18: Comparative analysis of graphene and other 2-D nanomaterials
  • Figure 27: Schematic representation of methods used for carbon nanotube synthesis (a) Arc discharge (b) Chemical vapor deposition (c) Laser ablation (d) hydrocarbon flames
  • Table 19: SWNT synthesis methods
  • Figure 28: Arc discharge process for CNTs
  • Figure 29: Schematic of thermal-CVD method
  • Figure 30: Schematic of plasma-CVD method
  • Figure 31: CoMoCATR process
  • Figure 32: Schematic for flame synthesis of carbon nanotubes (a) premixed flame (b) counter-flow diffusion flame (c) co-flow diffusion flame (d) inverse diffusion flame
  • Figure 33: Schematic of laser ablation synthesis
  • Table 20: Large area graphene films-Markets, applications and current global market
  • Table 21: Graphene oxide flakes/graphene nanoplatelets-Markets, applications and current global market
  • Table 22: Main production methods for graphene
  • Figure 34: Graphene synthesis methods
  • Figure 35: Schematic of roll-to-roll manufacturing process
  • Table 23: Graphene synthesis methods, by company
  • Table 24: Carbon nanotubes market structure
  • Table 25: Graphene market structure
  • Figure 36: CNT patents filed 2000-2014
  • Figure 37: Patent distribution of CNT application areas to 2014
  • Table 26: Published patent publications for graphene, 2004-2014
  • Figure 38: Published patent publications for graphene, 2004-2014
  • Table 27: Leading graphene patentees
  • Table 28: Industrial graphene patents in 2014
  • Figure 39: Technology Readiness Level (TRL) for Carbon Nanotubes
  • Figure 40: Technology Readiness Level (TRL) for graphene
  • Table 29: Market penetration and volume estimates (tons) for carbon nanotubes and graphene in key applications
  • Table 30: Global production of carbon nanotubes, 2010-2025 in tons/year. Base year for projections is 2014
  • Figure 41: Regional demand for CNTs utilized in transparent conductive films and displays
  • Figure 42: Regional demand for CNTs utilized in batteries
  • Figure 43: Regional demand for CNTs utilized in Polymer reinforcement
  • Table 31: Current carbon nanotubes prices
  • Table 32: Global production of graphene, 2010-2025 in tons/year. Base year for projections is 2014
  • Figure 44: Global production of graphene, 2010-2025 in tons/year. Base year for projections is 2014
  • Table 33: Annual production capacity of main carbon nanotubes producers
  • Table 34: Graphene producers and production capacity (Current and projected), prices and target markets
  • Table 35: Carbon nanotubes in the electronics and photonics market-applications, stage of commercialization and addressable market size
  • Table 36: Graphene in the electronics and photonics marketapplications, stage of commercialization and addressable market size
  • Table 37: Comparison of ITO replacements
  • Figure 45: A large transparent conductive graphene film
  • Figure 46: CNT transparent conductive film formed on glass and schematic diagram of its structure
  • Figure 47: Graphene electrochromic devices
  • Figure 48: Flexible transistor sheet
  • Figure 49: The transmittance of glass/ITO, glass/ITO/four organic layers, and glass/ITO/four organic layers/4-layer graphene
  • Table 38: Carbon nanotubes product and application developers in transparent conductive films and displays
  • Table 39: Graphene product and application developers in transparent conductive films
  • Table 40: Comparative properties of conductive inks
  • Figure 50: Vorbeck Materials conductive ink products (Image credit: Vorbeck Materials)
  • Figure 51: Nanotube inks
  • Figure 52: Graphene printed antenna
  • Figure 53: BGT Materials graphene ink product
  • Table 41: Carbon nanotubes product and application developers in conductive inks
  • Table 42: Graphene product and application developers in conductive inks
  • Figure 54: Schematic cross-section of a graphene base transistor (GBT, left) and a graphene field-effect transistor (GFET, right)
  • Figure 55: Thin film transistor incorporating CNTs
  • Figure 56: Graphene IC in wafer tester
  • Table 43: Carbon nanotubes product and application developers in transistors and integrated circuits
  • Table 44: Graphene product and application developers in transistors and integrated circuits
  • Figure 57: Stretchable CNT memory and logic devices for wearable electronics
  • Figure 58: SEM image of the deposited film (or fabric) of crossed nanotubes that can be either touching or slightly separated depending on their position
  • Figure 59: Schematic of NRAM
  • Figure 60: Schematic of NRAM cell
  • Figure 61: Carbon nanotubes NRAM chip
  • Figure 62: A schematic diagram for the mechanism of the resistive switching in metal/GO/Pt
  • Table 45: Carbon nanotubes product and application developers in memory devices
  • Table 46: Graphene product and application developers in memory devices
  • Table 47: Graphene properties relevant to application in optical modulators
  • Figure 63: Hybrid graphene phototransistors
  • Table 48: Dispersion of graphene in polymers
  • Table 49: Carbon nanotubes in the polymer composites marketapplications, stage of commercialization and addressable market size
  • Table 50: Graphene in the polymer composites marketapplications, stage of commercialization and addressable market size
  • Table 51: Addressable market size for carbon nanomaterials composites
  • Table 52: Graphene properties relevant to application in polymer composites
  • Table 53: Carbon nanotubes product and application developers in the composites industry
  • Table 54: Graphene product and application developers in the composites industry
  • Table 55: Carbon nanotubes in the aerospace market-applications, stage of commercialization and addressable market size
  • Table 56: Graphene in the aerospace market-applications, stage of commercialization and addressable market size
  • Table 57: Carbon nanotubes product and application developers in the aerospace industry
  • Table 58: Graphene product and application developers in the aerospace industry
  • Table 59: Carbon nanotubes in the automotive marketapplications, stage of commercialization and addressable market size
  • Table 60: Graphene in the automotive market-applications, stage of commercialization and addressable market size
  • Table 61: Carbon nanotubes product and application developers in the automotive industry
  • Table 62: Graphene product and application developers in the automotive industry
  • Table 63: Carbon nanotubes in the biomedical and healthcare markets-applications, stage of commercialization and addressable market size
  • Table 64: Graphene in the biomedical and healthcare marketsapplications, stage of commercialization and addressable market size
  • Table 65: CNTs in life sciences and biomedicine
  • Table 66: Graphene properties relevant to application in biomedicine and healthcare
  • Figure 64: Schematic representation of functionalized fullerene (A) and carbon nanotube (B) for drug delivery in cancer therapy
  • Table 67: Carbon nanotubes product and application developers in the medical and healthcare industry
  • Table 68: Graphene product and application developers in the medical and healthcare industry
  • Figure 65: Global Paints and Coatings Market, share by end user market
  • Table 69: Carbon nanotubes in the coatings market-applications, stage of commercialization and addressable market size
  • Table 70: Graphene in the coatings market-applications, stage of commercialization and addressable market size
  • Figure 66: Heat transfer coating developed at MIT
  • Table 71: Graphene properties relevant to application in coatings
  • Figure 67: Water permeation through a brick without (left) and with (right) "graphene paint" coating
  • Table 72: Carbon nanotubes product and application developers in the coatings industry
  • Table 73: Graphene product and application developers in the coatings industry
  • Table 74: Carbon nanotubes in the filtration market-applications, stage of commercialization and addressable market size
  • Table 75: Comparison of CNT membranes with other membrane technologies
  • Figure 68: Degradation of organic dye molecules by graphene hybrid composite photocatalysts
  • Table 76: Carbon nanotubes product and application developers in the filtration industry
  • Table 77: Graphene product and application developers in the filtration industry
  • Table 78: Carbon nanotubes in the energy market-Applications, stage of commercialization and addressable market size
  • Table 79: Graphene in the energy market-Applications, stage of commercialization and addressable market size
  • Figure 69: Nano Lithium X Battery
  • Figure 70: Skeleton Technologies ultracapacitor
  • Figure 71: Zapgo supercapacitor phone charger
  • Table 80: Comparative properties of graphene supercapacitors and lithium-ion batteries
  • Figure 72: Nanotube frame module
  • Figure 73: Solar cell with nanowires and graphene electrode
  • Table 81: Carbon nanotubes product and application developers in the energy industry
  • Table 82: Graphene product and application developers in the energy industry
  • Table 83: Carbon nanotubes in the sensors market-applications, stage of commercialization and addressable market size
  • Table 84: Graphene in the sensors market-applications, stage of commercialization and addressable market size
  • Table 85: Graphene properties relevant to application in sensors
  • Figure 74: GFET sensors
  • Figure 75: First generation point of care diagnostics
  • Figure 76: Graphene Field Effect Transistor Schematic
  • Table 86: Comparison of ELISA (enzyme-linked immunosorbent assay) and graphene biosensor
  • Table 87: Carbon nanotubes product and application developers in the sensors industry
  • Table 88: Graphene product and application developers in the sensors industry
  • Figure 77: 3D Printed tweezers incorporating Carbon Nanotube Filament
  • Table 89: Graphene properties relevant to application in 3D printing
  • Table 90: Carbon nanotubes product and application developers in the 3D printing industry
  • Table 91: Graphene product and application developers in the 3D printing industry
  • Table 92: Graphene properties relevant to application in adhesives
  • Table 93: Carbon nanotubes product and application developers in the adhesives industry
  • Table 94: Graphene product and application developers in the adhesives industry
  • Table 95: Applications of carbon nanomaterials in lubricants
  • Table 96: Carbon nanotubes product and application developers in the lubricants industry
  • Table 97: Graphene product and application developers in the lubricants industry
  • Table 98: Desirable functional properties for the textiles industry afforded by the use of nanomaterials
  • Figure 78: Schematic illustration of the SWCNT-based electronic devices as a wearable array platform
  • Table 99: Carbon nanotubes product and application developers in the textiles industry
Back to Top