株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

世界の主要ナノマテリアル市場:カーボンナノチューブ・グラフェン・ナノセルロース

The Global Market for High Impact Nanomaterials

発行 Future Markets, Inc. 商品コード 255582
出版日 ページ情報 英文 1025 Pages
即納可能
価格
本日の銀行送金レート: 1GBP=144.86円で換算しております。
Back to Top
世界の主要ナノマテリアル市場:カーボンナノチューブ・グラフェン・ナノセルロース The Global Market for High Impact Nanomaterials
出版日: 2017年01月31日 ページ情報: 英文 1025 Pages
概要

当レポートでは、高い影響力を持つ各種ナノマテリアルの市場について調査し、主要ナノマテリアルの概要・特徴・主なエンドユーザー産業と用途、産業の成長とその展望、技術成熟度と今後のロードマップ、市場成長の推進因子・阻害因子の分析、製造量および設備製造能力の推移と予測、関連法規制・標準規格・特許、主要メーカー・研究所・開発事業者のプロファイルなどを詳細にわたってまとめています。

第1章 調査手法

第2章 エグゼクティブサマリー

第3章 イントロダクション

第4章 カーボンナノチューブ

第5章 グラフェン

第6章 その他の2D材料

第7章 ナノセルロース

第8章 グラフェンとカーボンナノチューブの比較分析

第9章 カーボンナノチューブの合成

第10章 グラフェンの合成

第11章 カーボンナノチューブ市場の構造

第12章 グラフェン市場の構造

第13章 ナノセルロース市場の構造

第14章 法規制・標準規格

第15章 カーボンナノチューブの特許

第16章 グラフェンの特許

第17章 ナノセルロースの特許

第18章 技術成熟度

第19章 カーボンナノチューブのエンドユーザー市場の分析

  • カーボンナノチューブの製造量の推移と予測
  • カーボンナノチューブメーカーの製造能力
  • カーボンナノチューブの地域需要
  • 主要カーボンナノチューブメーカー
  • カーボンナノチューブの価格:MWNT・SWNT・FWNT
  • 用途

第20章 グラフェンのエンドユーザー市場の分析

  • グラフェンの製造量の推移と予測
  • グラフェンメーカーとその製造能力

第21章 ナノセルロースのエンドユーザー市場の分析

  • ナノセルロースの製造

第22章 接着剤

  • 市場の発展因子と動向
  • 特徴と用途
  • 市場規模と機会
  • 市場課題
  • アプリケーション/製品開発業者

第23章 航空宇宙

  • 市場の発展因子と動向
  • 特徴と用途
  • 市場規模と機会
  • 市場課題
  • アプリケーション/製品開発業者

第24章 自動車

  • 市場の発展因子と動向
  • 特徴と用途
  • 市場規模と機会
  • 市場課題
  • アプリケーション/製品開発業者

第25章 バイオ医療 & 医療

  • 市場の発展因子と動向
  • 用途
  • 市場規模と機会
  • 市場課題
  • アプリケーション/製品開発業者

第26章 塗料

  • 市場の発展因子と動向
  • 特徴と用途
  • 市場規模と機会
  • 市場課題
  • 製品開発業者

第27章 複合材料

  • 市場の発展因子と動向
  • 特徴と用途
  • 市場規模と機会
  • 市場課題
  • アプリケーション/製品開発業者

第28章 エレクトロニクス・フォトニクス

  • エレクトロニクスにおけるカーボンナノチューブ
  • エレクトロニクスにおけるグラフェンおよび2D材料
  • フレキシブルエレクトロニクス・導電性フィルム・ディスプレイ
  • 導電性インク
  • トランジスタ・集積回路
  • メモリーデバイス
  • フォトニクス

第29章 エネルギー貯蔵・エネルギー変換・エネルギー探査

  • バッテリー
  • スーパーコンデンサ
  • 太陽電池
  • 燃料電池・水素貯蔵
  • LED照明・UVC
  • 石油・ガス探査
  • アプリケーション/製品開発業者

第30章 濾過・分離

  • 市場の発展因子と動向
  • 特徴と用途
  • 市場規模と機会
  • 市場課題
  • アプリケーション/製品開発業者

第31章 潤滑油

  • 市場の発展因子と動向
  • 特徴と用途
  • 市場規模と機会
  • 市場課題
  • アプリケーション/製品開発業者

第32章 センサー

  • 市場の発展因子と動向
  • 特徴と用途
  • 市場規模と機会
  • 市場課題
  • アプリケーション/製品開発業者

第33章 テキスタイル・アパレル

  • 市場の発展因子と動向
  • 特徴と用途
  • 市場規模と機会
  • アプリケーション/製品開発業者

第34章 3Dプリンティング

  • 市場の発展因子と動向
  • 特徴と用途
  • 市場規模と機会
  • 市場課題
  • アプリケーション/製品開発業者

第35章 紙・板紙

  • 市場の発展因子と動向
  • 用途
  • 市場規模
  • ナノセルロースの機会
  • 市場課題
  • 商業活動

第36章 エアロゲル

  • 市場の発展因子と動向
  • 市場規模
  • 用途
  • 製品開発業者

第37章 レオロジー改質剤

  • 用途
  • 商業活動

第38章 カーボンナノチューブメーカー・製品開発業者

第39章 グラフェンメーカー・製品開発事業者

第40章 ナノセルロース企業のプロファイル

第41章 参考文献

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

Nanocellulose, carbon nanotubes, graphene and other 2D materials will make a huge impact in the next 10-15 years.

Many industries including electronics, automotive, aerospace, telecommunications and healthcare are exploring the use of high impact nanomaterials such as nanocellulose, carbon nanotubes and graphene. Other 2-D nanomaterials such as silicene, graphyne, graphdiyne, grapahane and molybdenum disulfide are also under intense study. CNTs and graphene are the strongest, lightest and most conductive fibers known to man, with a performance-per-weight greater than any other material.

All of these materials possess outstanding properties and represent potentially the most economically viable and lucrative nanomaterials through to the middle of the next decade and beyond. Most are relatively new nanomaterials but are coming onto the market fast and will find widespread applications over the next decade in sectors such as composites, electronics, filtration, medical and life sciences, oil and energy, automotive, aerospace, coatings, military, consumer goods and sensors.

This 1031 page report outlines the global scenario for these materials including:

  • Industry growth and prospects
  • Industry structure
  • Historical data
  • Market forecasts
  • Key market drivers and restraints
  • Technology roadmaps and application timelines
  • Over 250 tables and figures
  • Producers, research centre and application developer profiles

Table of Contents

1. RESEARCH METHODOLOGY

  • 1.1. NANOMATERIALS MARKET RATING SYSTEM
  • 1.2. COMMERCIAL IMPACT RATING SYSTEM
  • 1.3. MARKET CHALLENGES RATING SYSTEM

2. EXECUTIVE SUMMARY

  • 2.1. CARBON NANOTUBES
    • 2.1.1. Exceptional properties
    • 2.1.2. Products and applications
    • 2.1.3. Threat from the graphene market
    • 2.1.4. Production
      • 2.1.4.1. Multi-walled nanotube (MWNT) production
      • 2.1.4.2. Single-walled nanotube (SWNT) production
    • 2.1.5. Global demand for carbon nanotubes
      • 2.1.5.1. Current products
      • 2.1.5.2. Future products
    • 2.1.6. Market drivers and trends
      • 2.1.6.1. Electronics
      • 2.1.6.2. Electric vehicles and lithium-ion batteries
    • 2.1.7. Market and production challenges
      • 2.1.7.1. Safety issues
      • 2.1.7.2. Dispersion
      • 2.1.7.3. Synthesis and supply quality
      • 2.1.7.4. Cost
      • 2.1.7.5. Competition from other materials
  • 2.2. TWO-DIMENSIONAL (2D) MATERIALS
  • 2.3. GRAPHENE
    • 2.3.1. Products
    • 2.3.2. Short-term opportunities
    • 2.3.3. Medium-term opportunities
    • 2.3.4. Remarkable properties
    • 2.3.5. Global funding and initiatives
      • 2.3.5.1. Europe
      • 2.3.5.2. Asia
      • 2.3.5.3. United States
    • 2.3.6. Products and applications
    • 2.3.7. Production
    • 2.3.8. Market drivers and trends
      • 2.3.8.1. Production exceeds demand
      • 2.3.8.2. Market revenues remain small
      • 2.3.8.3. Scalability and cost
      • 2.3.8.4. Applications hitting the market
      • 2.3.8.5. Wait and see?
      • 2.3.8.6. Asia and US lead the race
      • 2.3.8.7. Competition from other materials
    • 2.3.9. Market and technical challenges
      • 2.3.9.1. Inconsistent supply quality
      • 2.3.9.2. Functionalization and dispersion
      • 2.3.9.3. Cost
      • 2.3.9.4. Product integration
      • 2.3.9.5. Regulation and standards
      • 2.3.9.6. Lack of a band gap
  • 2.4. NANOCELLULOSE
    • 2.4.1. Applications
    • 2.4.2. Production
    • 2.4.3. Market drivers
      • 2.4.3.1. Sustainable materials
      • 2.4.3.2. Improved products
      • 2.4.3.3. Unique properties
      • 2.4.3.4. Recent improvements in production and product integration
    • 2.4.4. Market and technical challenges
      • 2.4.4.1. Characterization
      • 2.4.4.2. Production
      • 2.4.4.3. Functionalization
      • 2.4.4.4. Moisture absorption and aggregation
      • 2.4.4.5. Scalability
      • 2.4.4.6. Lack of current products

3. INTRODUCTION

  • 3.1. Properties of nanomaterials
  • 3.2. Categorization

4. CARBON NANOTUBES

  • 4.1. Multi-walled nanotubes (MWNT)
  • 4.2. Single-wall carbon nanotubes (SWNT)
    • 4.2.1. Single-chirality
  • 4.3. Double-walled carbon nanotubes (DWNTs)
  • 4.4. Few-walled carbon nanotubes (FWNTs)
  • 4.5. Carbon Nanohorns (CNHs)
  • 4.6. Carbon Onions
  • 4.7. Fullerenes
  • 4.8. Boron Nitride nanotubes (BNNTs)
  • 4.9. Properties
  • 4.10. Applications of carbon nanotubes
    • 4.10.1. High volume applications
    • 4.10.2. Low volume applications
    • 4.10.3. Novel applications

5. GRAPHENE

  • 5.1. History
  • 5.2. Forms of graphene
  • 5.3. Properties
  • 5.4. 3D Graphene
  • 5.5. Graphene Quantum Dots
    • 5.5.1. Synthesis
    • 5.5.2. Applications
    • 5.5.3. Producers

6. OTHER 2D MATERIALS

  • 6.1. Black phosphorus/Phosphorene
    • 6.1.1. Properties
    • 6.1.2. Applications
  • 6.2. C2N
    • 6.2.1. Properties
    • 6.2.2. Applications
  • 6.3. Carbon nitride
    • 6.3.1. Properties
    • 6.3.2. Applications
  • 6.4. Germanene
    • 6.4.1. Properties
    • 6.4.2. Applications
  • 6.5. Graphdiyne
    • 6.5.1. Properties
    • 6.5.2. Applications
  • 6.6. Graphane
    • 6.6.1. Properties
    • 6.6.2. Applications
  • 6.7. Hexagonal boron nitride
    • 6.7.1. Properties
    • 6.7.2. Applications
    • 6.7.3. Producers
  • 6.8. Molybdenum disulfide (MoS2)
    • 6.8.1. Properties
    • 6.8.2. Applications
  • 6.9. Rhenium disulfide (ReS2) and diselenide (ReSe2)
    • 6.9.1. Properties
    • 6.9.2. Applications
  • 6.10. Silicene
    • 6.10.1. Properties
    • 6.10.2. Applications
  • 6.11. Stanene/tinene
    • 6.11.1. Properties
  • 6.12. Applications
  • 6.13. Tungsten diselenide
    • 6.13.1. Properties
    • 6.13.2. Applications

7. NANOCELLULOSE

  • 7.1. What is nanocellulose?
  • 7.2. Types of nanocellulose
  • 7.3. NanoFibrillar Cellulose (NFC)
    • 7.3.1.1. Applications
    • 7.3.1.2. Production methods
    • 7.3.2. NanoCrystalline Cellulose (NCC)
      • 7.3.2.1. Applications
    • 7.3.3. Bacterial Cellulose (BCC)
      • 7.3.3.1. Applications
  • 7.4. Synthesis of cellulose materials
    • 7.4.1. Microcrystalline cellulose (MCC)
    • 7.4.2. Microfibrillated cellulose (MFC)
    • 7.4.3. Nanofibrillated cellulose (MFC)
    • 7.4.4. Cellulose nanocrystals (CNC)
    • 7.4.5. Bacterial cellulose particles (CNC)
  • 7.5. Properties of nanocellulose
  • 7.6. Advantages of nanocellulose

8. COMPARATIVE ANALYSIS OF GRAPHENE AND CARBON NANOTUBES

  • 8.1. Comparative properties
  • 8.2. Cost and production
  • 8.3. Carbon nanotube-graphene hybrids
  • 8.4. Competitive market analysis of carbon nanotubes and graphene

9. CARBON NANOTUBE SYNTHESIS

  • 9.1. Arc discharge synthesis
  • 9.2. Chemical Vapor Deposition (CVD)
  • 9.3. Plasma enhanced chemical vapor deposition (PECVD)
  • 9.4. High-pressure carbon monoxide synthesis
    • 9.4.1. High Pressure CO (HiPco)
    • 9.4.2. CoMoCAT
  • 9.5. Flame synthesis
  • 9.6. Laser ablation synthesis
  • 9.7. Silane solution method

10. GRAPHENE SYNTHESIS

  • 10.1. Large area graphene films
  • 10.2. Graphene oxide flakes and graphene nanoplatelets
  • 10.3. Production methods
    • 10.3.1. Production directly from natural graphite ore
    • 10.3.2. Alternative starting materials
    • 10.3.3. Quality
  • 10.4. Synthesis and production by types of graphene
    • 10.4.1. Graphene nanoplatelets (GNPs)
    • 10.4.2. Graphene nanoribbons
    • 10.4.3. Large-area graphene films
    • 10.4.4. Graphene oxide flakes (GO)
  • 10.5. Pros and cons of graphene production methods
    • 10.5.1. Chemical Vapor Deposition (CVD)
    • 10.5.2. Exfoliation method
    • 10.5.3. Epitaxial growth method
    • 10.5.4. Wet chemistry method (liquid phase exfoliation)
    • 10.5.5. Micromechanical cleavage method
    • 10.5.6. Green reduction of graphene oxide
    • 10.5.7. Plasma
  • 10.6. Recent synthesis methods
    • 10.6.1. Ben-Gurion University of the Negev (BGU) and University of Western Australia
    • 10.6.2. Graphene Frontiers
    • 10.6.3. MIT and the University of Michigan
    • 10.6.4. Oak Ridge National Laboratory/University of Texas/General Graphene
    • 10.6.5. University of Florida/Donghua University
    • 10.6.6. Ulsan National Institute of Science and Technology (UNIST) and Case Western Reserve University
    • 10.6.7. Trinity College Dublin
    • 10.6.8. Sungkyunkwan University and Samsung Advanced Institute of Technology (SAIT)
    • 10.6.9. Korea Institute of Science and Technology (KIST), Chonbuk National University and KRICT
    • 10.6.10. NanoXplore
    • 10.6.11. Carbon Sciences Inc.
    • 10.6.12. California Institute of Technology
    • 10.6.13. Shanghai Institute of Microsystem and Information Technology
    • 10.6.14. Oxford University
    • 10.6.15. University of Tokyo
  • 10.7. Synthesis methods by company
  • 10.8. NANOCELLULOSE SYNTHESIS
    • 10.8.1. Production methods
      • 10.8.1.1. Nanofibrillated cellulose production methods
      • 10.8.1.2. Nanocrystalline celluose production methods

11. CARBON NANOTUBES MARKET STRUCTURE

12. GRAPHENE MARKET STRUCTURE

13. NANOCELLULOSE MARKET STRUCTURE

14. REGULATIONS AND STANDARDS

  • 14.1. Europe
    • 14.1.1. REACH
    • 14.1.2. Biocidal Products Regulation
    • 14.1.3. National nanomaterials registers
    • 14.1.4. Cosmetics regulation
    • 14.1.5. Food safety
  • 14.2. United States
    • 14.2.1. Toxic Substances Control Act (TSCA)
  • 14.3. Asia
    • 14.3.1. Japan
    • 14.3.2. South Korea
    • 14.3.3. Taiwan
    • 14.3.4. Australia

15. CARBON NANOTUBES PATENTS

16. GRAPHENE PATENTS

  • 16.1. Fabrication processes
  • 16.2. Academia
  • 16.3. Regional leaders

17. NANOCELLULOSE PATENTS

18. TECHNOLOGY READINESS LEVEL

  • 18.1. Carbon nanotubes
  • 18.2. Graphene
  • 18.3. Nanodiamonds
  • 18.4. Nanocellulose

19. CARBON NANOTUBES END USER MARKET SEGMENT ANALYSIS

  • 19.1. Production volumes in metric tons, 2010-2025
  • 19.2. Carbon nanotube producer production capacities
  • 19.3. Regional demand for carbon nanotubes
    • 19.3.1. Japan
    • 19.3.2. China
  • 19.4. Main carbon nanotubes producers
    • 19.4.1. SWNT production
      • 19.4.1.1. OCSiAl
      • 19.4.1.2. FGV Cambridge Nanosystems
      • 19.4.1.3. Zeon Corporation
  • 19.5. Price of carbon nanotubes-MWNTs, SWNTs and FWNTs
    • 19.5.1. MWNTs
    • 19.5.2. SWNTs
  • 19.6. APPLICATIONS

20. GRAPHENE END USER MARKET SEGMENT ANALYSIS

  • 20.1. Graphene production volumes 2010-2025
  • 20.2. Graphene producers and production capacities

21. NANOCELLULOSE END USER MARKET SEGMENT ANALYSIS

  • 21.1. Production of nanocellulose
    • 21.1.1. Microfibrillated cellulose
    • 21.1.2. Cellulose nanofiber production
    • 21.1.3. Cellulose nanocrystal production
    • 21.1.4. Production volumes, by region
    • 21.1.5. Applications
    • 21.1.6. Prices

22. ADHESIVES

  • 22.1. MARKET DRIVERS AND TRENDS
    • 22.1.1. Thermal management in high temperature electronics
    • 22.1.2. Environmental sustainability
  • 22.2. PROPERTIES AND APPLICATIONS
  • 22.3. MARKET SIZE AND OPPORTUNITY
  • 22.4. MARKET CHALLENGES
  • 22.5. APPLICATION AND PRODUCT DEVELOPERS
    • 22.5.1. Carbon nanotubes
    • 22.5.2. Graphene

23. AEROSPACE

  • 23.1. MARKET DRIVERS AND TRENDS
    • 23.1.1. Safety
    • 23.1.2. Reduced fuel consumption and costs
    • 23.1.3. Increased durability
    • 23.1.4. Multi-functionality
    • 23.1.5. Need for new de-icing solutions
    • 23.1.6. Weight reduction
    • 23.1.7. Need for improved lightning protection materials
  • 23.2. PROPERTIES AND APPLICATIONS
    • 23.2.1. Composites
      • 23.2.1.1. ESD protection
      • 23.2.1.2. Conductive cables
      • 23.2.1.3. Anti-friction braking systems
    • 23.2.2. Coatings
      • 23.2.2.1. Anti-icing
    • 23.2.3. Sensors
  • 23.3. MARKET SIZE AND OPPORTUNITY
  • 23.4. MARKET CHALLENGES
  • 23.5. APPLICATION AND PRODUCT DEVELOPERS
    • 23.5.1. Carbon nanotubes
    • 23.5.2. Graphene

24. AUTOMOTIVE

  • 24.1. MARKET DRIVER AND TRENDS
    • 24.1.1. Environmental regulations
    • 24.1.2. Lightweighting
    • 24.1.3. Increasing use of natural fiber composites
    • 24.1.4. Safety
    • 24.1.5. Cost
    • 24.1.6. Need for enhanced conductivity in fuel components
    • 24.1.7. Increase in the use of touch-based automotive applications
  • 24.2. PROPERTIES AND APPLICATIONS
    • 24.2.1. Composites
    • 24.2.2. Thermally conductive additives
    • 24.2.3. Vehicle mass reduction
    • 24.2.4. Lithium-ion batteries in electric and hybrid vehicles
    • 24.2.5. Paints and coatings
  • 24.3. MARKET SIZE AND OPPORTUNITY
    • 24.3.1. Composites
    • 24.3.2. Coatings
  • 24.3.2.1. Total market size
  • 24.3.2.2. Carbon nanomaterials opportunity
    • 24.3.3.MARKET CHALLENGES
  • 24.4. APPLICATION AND PRODUCT DEVELOPERS
    • 24.4.1. Carbon nanotubes
    • 24.4.2. Graphene
    • 24.4.3. Nanocellulose

25. BIOMEDICAL & HEALTHCARE

  • 25.1. MARKET DRIVERS AND TRENDS
    • 25.1.1. Improved drug delivery for cancer therapy
    • 25.1.2. Shortcomings of chemotherapies
    • 25.1.3. Biocompatibility of medical implants
    • 25.1.4. Anti-biotic resistance
    • 25.1.5. Growth in advanced woundcare market
    • 25.1.6. Growth in the wearable monitoring market
  • 25.2. APPLICATIONS
    • 25.2.1. Cancer therapy
      • 25.2.1.1. Immunotherapy
      • 25.2.1.2. Thermal ablation
      • 25.2.1.3. Stem cell therapy
      • 25.2.1.4. Graphene oxide for therapy and drug delivery
      • 25.2.1.5. Graphene nanosheets
      • 25.2.1.6. Gene delivery
      • 25.2.1.7. Photodynamic Therapy
    • 25.2.2. Medical implants and devices
    • 25.2.3. Drug delivery
    • 25.2.4. Wound dressings
    • 25.2.5. Biosensors
      • 25.2.5.1. FRET biosensors for DNA detection
    • 25.2.6. Medical imaging
    • 25.2.7. Tissue engineering
    • 25.2.8. Dental
    • 25.2.9. Electrophysiology
    • 25.2.10. Laterial flow immunosay labels
  • 25.3. MARKET SIZE AND OPPORTUNITY
  • 25.4. MARKET CHALLENGES
    • 25.4.1. Potential toxicity
    • 25.4.2. Safety
    • 25.4.3. Dispersion
  • 25.5. APPLICATION AND PRODUCT DEVELOPERS
    • 25.5.1. Carbon nanotubes
    • 25.5.2. Graphene
    • 25.5.3. Nanocellulose

26. COATINGS

  • 26.1. MARKET DRIVERS AND TRENDS
    • 26.1.1. New functionalities and improved properties
    • 26.1.2. Need for more effective protection
    • 26.1.3. Sustainability and regulation
    • 26.1.4. Cost of corrosion
    • 26.1.5. Need for improved hygiene
    • 26.1.6. Cost of weather-related damage
    • 26.1.7. Increased demand for coatings for extreme environments
    • 26.1.8. Increased demand for abrasion and scratch resistant coatings
    • 26.1.9. Increased demand for UV-resistant coatings
    • 26.1.10. Growth in superhydrophobic coatings market
  • 26.2. PROPERTIES AND APPLICATIONS
    • 26.2.1. Anti-static coatings
    • 26.2.2. Anti-corrosion coatings
      • 26.2.2.1. Marine
      • 26.2.2.2. Oil and gas
    • 26.2.3. Anti-microbial
    • 26.2.4. Anti-icing
    • 26.2.5. Barrier coatings
    • 26.2.6. Heat protection
    • 26.2.7. Anti-fouling
    • 26.2.8. Wear and abrasion resistance
    • 26.2.9. Smart windows
    • 26.2.10. Anti-counterfeiting films
    • 26.2.11. Gas barriers
  • 26.3. MARKET SIZE AND OPPORTUNITY
  • 26.4. MARKET CHALLENGES
    • 26.4.1. High viscosity
    • 26.4.2. Moisture sorption
    • 26.4.3. Durability
    • 26.4.4. Dispersion
    • 26.4.5. Transparency
    • 26.4.6. Production, scalability and cost
  • 26.5. PRODUCT DEVELOPERS
    • 26.5.1. Carbon nanotubes
    • 26.5.2. Graphene
    • 26.5.3. Nanocellulose

27. COMPOSITES

  • 27.1. MARKET DRIVERS AND TRENDS
    • 27.1.1. Growing use of polymer composites
    • 27.1.2. Increased need for advanced, protective materials
    • 27.1.3. Improved performance over traditional composites
    • 27.1.4. Multi-functionality
    • 27.1.5. Growth in use in the wind energy market
    • 27.1.6. Need for new flame retardant materials
    • 27.1.7. Environmental impact of carbon fibers
    • 27.1.8. Shortcomings of natural fiber composites and glass fiber reinforced composites
    • 27.1.9. Growth in the bio-based packaging sector
    • 27.1.10. Growth in the barrier food packaging sector
    • 27.1.11. Shortcoming of packaging biopolymers
    • 27.1.12. Sustainable packaging solutions
    • 27.1.13. Demand for packaging with enhanced functionality
  • 27.2. PROPERTIES AND APPLICATIONS
    • 27.2.1. Polymer composites
    • 27.2.2. Barrier packaging
  • 27.2.2.1. Anti-bacterial
  • 27.2.2.2. Gas barrier
    • 27.2.3. Electrostatic discharge (ESD) and electromagnetic interference (EMI) shielding
    • 27.2.4. Wind turbines
    • 27.2.5. Ballistic protection
    • 27.2.6. Cement additives
    • 27.2.7. Sporting goods
    • 27.2.8. Wire and cable
    • 27.2.9. Thermal management
    • 27.2.10. Rubber and elastomers
  • 27.3. MARKET SIZE AND OPPORTUNITY
    • 27.3.1. Total market size
    • 27.3.2. High Impact nanomaterials opportunity
  • 27.4. MARKET CHALLENGES
  • 27.5. APPLICATION AND PRODUCT DEVELOPERS
    • 27.5.1. Carbon nanotubes
    • 27.5.2. Graphene
    • 27.5.3. Nanocellulose

28. ELECTRONICS AND PHOTONICS

  • 28.1. Carbon nanotubes in electronics
  • 28.2. Graphene and 2D materials in electronics
    • 28.2.1. Properties
    • 28.2.2. Applications
  • 28.3. FLEXIBLE ELECTRONICS, CONDUCTIVE FILMS AND DISPLAYS
    • 28.3.1. MARKET DRIVERS AND TRENDS
      • 28.3.1.1. ITO replacement for flexible electronics
      • 28.3.1.2. Growth in the wearable electronics market
      • 28.3.1.3. Touch technology requirements
      • 28.3.1.4. Need for improved barrier function
      • 28.3.1.5. Energy needs of wearable devices
      • 28.3.1.6. Increased power and performance of sensors with reduced cost
      • 28.3.1.7. Growth in the printed sensors market
      • 28.3.1.8. Growth in the home diagnostics and point of care market
    • 28.3.2. PROPERTIES AND APPLICATIONS
      • 28.3.2.1. Transparent electrodes in flexible electronics
      • 28.3.2.2. SWNTs
      • 28.3.2.3. Double-walled carbon nanotubes
      • 28.3.2.4. Graphene
      • 28.3.2.5. Electronic paper
      • 28.3.2.6. Wearable electronics
      • 28.3.2.7. Flexible energy storage
      • 28.3.2.8. Wearable sensors
      • 28.3.2.9. Wearable gas sensors
      • 28.3.2.10. Wearable strain sensors
      • 28.3.2.11. Wearable tactile sensors
      • 28.3.2.12. Wearable health monitoring
    • 28.3.3. MARKET SIZE AND OPPORTUNITY
      • 28.3.3.1. Touch panel and ITO replacement
      • 28.3.3.2. Wearable electronics
      • 28.3.3.3. Wearable health monitoring
      • 28.3.3.4. Wearable energy storage and harvesting devices
    • 28.3.4. CHALLENGES
      • 28.3.4.1. Competing materials
      • 28.3.4.2. Cost in comparison to ITO
      • 28.3.4.3. Fabricating SWNT devices
      • 28.3.4.4. Problems with transfer and growth
      • 28.3.4.5. Improving sheet resistance
      • 28.3.4.6. Difficulties in display panel integration
      • 28.3.4.7. Manufacturing
      • 28.3.4.8. Integration
      • 28.3.4.9. Competing materials
    • 28.3.5. APPLICATION AND PRODUCT DEVELOPERS
      • 28.3.5.1. Carbon nanotubes
      • 28.3.5.2. Graphene
      • 28.3.5.3. Nanocellulose
      • 28.4. CONDUCTIVE INKS
    • 28.4.1. MARKET DRIVERS AND TRENDS
      • 28.4.1.1. Increased demand for printed electronics
      • 28.4.1.2. Limitations of existing conductive inks
      • 28.4.1.3. Growth in the 3D printing market
      • 28.4.1.4. Growth in the printed sensors market
    • 28.4.2. PROPERTIES AND APPLICATIONS
      • 28.4.2.1. Carbon nanotubes
      • 28.4.2.2. Graphene
    • 28.4.3. MARKET SIZE AND OPPORTUNITY
      • 28.4.3.1. Total market size
      • 28.4.3.2. Carbon nanomaterials opportunity
    • 28.4.4. MARKET CHALLENGES
    • 28.4.5. APPLICATION AND PRODUCT DEVELOPERS
      • 28.4.5.1. Carbon nanotubes
      • 28.4.5.2. Graphene
  • 28.5. TRANSISTORS AND INTEGRATED CIRCUITS
    • 28.5.1. MARKET DRIVERS AND TRENDS
      • 28.5.1.1. Scaling
      • 28.5.1.2. Limitations of current materials
      • 28.5.1.3. Limitations of copper as interconnect materials
      • 28.5.1.4. Need to improve bonding technology
      • 28.5.1.5. Need to improve thermal properties
    • 28.5.2. PROPERTIES AND APPLICATIONS
      • 28.5.2.1. Carbon nanotubes
      • 28.5.2.2. Graphene
      • 28.5.2.3. Graphene Radio Frequency (RF) circuits
      • 28.5.2.4. Graphene spintronics
    • 28.5.3. MARKET SIZE AND OPPORTUNITY
    • 28.5.4. CHALLENGES
      • 28.5.4.1. Device complexity
      • 28.5.4.2. Competition from other materials
      • 28.5.4.3. Lack of band gap
      • 28.5.4.4. Transfer and integration
    • 28.5.5. APPLICATION AND PRODUCT DEVELOPERS
      • 28.5.5.1. Carbon nanotubes
      • 28.5.5.2. Graphene
  • 28.6. MEMORY DEVICES
    • 28.6.1. MARKET DRIVERS AND TRENDS
      • 28.6.1.1. Density and voltage scaling
      • 28.6.1.2. Growth in the smartphone and tablet markets
      • 28.6.1.3. Growth in the flexible electronics market
    • 28.6.2. PROPERTIES AND APPLICATIONS
      • 28.6.2.1. Carbon nanotubes
      • 28.6.2.2. Graphene
    • 28.6.3. MARKET SIZE AND OPPORTUNITY
      • 28.6.3.1. Total market size
    • 28.6.4. APPLICATION AND PRODUCT DEVELOPERS
      • 28.6.4.1. Carbon nanotubes
      • 28.6.4.2. Graphene
  • 28.7. PHOTONICS
    • 28.7.1. MARKET DRIVERS AND TRENDS
      • 28.7.1.1. Increased bandwidth at reduced cost
      • 28.7.1.2. Increasing sensitivity of photodetectors
    • 28.7.2. PROPERTIES AND APPLICATIONS
      • 28.7.2.1. Si photonics versus graphene
      • 28.7.2.2. Optical modulators
      • 28.7.2.3. Photodetectors
      • 28.7.2.4. Plasmonics
      • 28.7.2.5. Fiber lasers
    • 28.7.3. CHALLENGES
      • 28.7.3.1. Need to design devices that harness graphene's properties
      • 28.7.3.2. Problems with transfer
      • 28.7.3.3. THz absorbance and nonlinearity
      • 28.7.3.4. Stability and sensitivity
    • 28.7.4. MARKET SIZE AND OPPORTUNITY
      • 28.7.4.1. Total market size
      • 28.7.4.2. Nanotechnology and nanomaterials opportunity
    • 28.7.5. MARKET CHALLENGES
    • 28.7.6. APPLICATION AND PRODUCT DEVELOPERS

29. ENERGY STORAGE, CONVERSION AND EXPLORATION

  • 29.1. BATTERIES
    • 29.1.1. MARKET DRIVERS AND TRENDS
      • 29.1.1.1. Growth in personal electronics, electric vehicles and smart grids markets
      • 29.1.1.2. Reduce dependence on lithium
      • 29.1.1.3. Shortcomings of existing battery and supercapacitor technology
      • 29.1.1.4. Reduced costs for widespread application
      • 29.1.1.5. Power sources for flexible electronics
    • 29.1.2. PROPERTIES AND APPLICATIONS
      • 29.1.2.1. Li-ion batteries (LIB)
      • 29.1.2.2. Lithium-air batteries
      • 29.1.2.3. Sodium-ion batteries
    • 29.1.3. MARKET SIZE AND OPPORTUNITY
      • 29.1.3.1. Total market size
      • 29.1.3.2. Nanotechnology and nanomaterials opportunity
    • 29.1.4. CHALLENGES
    • 29.1.5. APPLICATION AND PRODUCT DEVELOPERS
  • 29.2. SUPERCAPACITORS
    • 29.2.1. MARKET DRIVERS AND TRENDS
      • 29.2.1.1. Reducing costs
      • 29.2.1.2. Demand from portable electronics
      • 29.2.1.3. Inefficiencies of standard battery technology
      • 29.2.1.4. Problems with activated carbon
    • 29.2.2. PROPERTIES AND APPLICATIONS
      • 29.2.2.1. Carbon nanotubes
      • 29.2.2.2. Graphene
      • 29.2.2.3. Graphene/CNT hybrids
    • 29.2.3. MARKET SIZE AND OPPORTUNITY
      • 29.2.3.1. Total market size
      • 29.2.3.2. Carbon nanomaterials opportunity
    • 29.2.4. CHALLENGES
      • 29.2.4.1. Low energy storage capacity of graphene
    • 29.2.5. APPLICATION AND PRODUCT DEVELOPERS
  • 29.3. PHOTOVOLTAICS
    • 29.3.1. MARKET DRIVERS AND TRENDS
      • 29.3.1.1. Need for new materials and novel devices
      • 29.3.1.2. Need for cost-effective solar energy for wider adoptions
      • 29.3.1.3. Varying environmental conditions require new coating technology
    • 29.3.2. PROPERTIES AND APPLICATIONS
      • 29.3.2.1. Solar cells
      • 29.3.2.2. Solar coatings
    • 29.3.3. MARKET SIZE AND OPPORTUNITY
      • 29.3.3.1. Total market size
      • 29.3.3.2. Carbon nanomaterials opportunity
    • 29.3.4. MARKET CHALLENGES
    • 29.3.5. APPLICATION AND PRODUCT DEVELOPERS
  • 29.4. FUEL CELLS AND HYDROGEN STORAGE
    • 29.4.1. MARKET DRIVERS AND TRENDS
      • 29.4.1.1. Need for alternative energy sources
      • 29.4.1.2. Demand from transportation and portable and stationary power sectors
      • 29.4.1.3. Temperature problems with current fuel cell technology
      • 29.4.1.4. Reducing corrosion problems
      • 29.4.1.5. Limitations of platinum
      • 29.4.1.6. Reducing cost and increasing reliability of current fuel cell technology
    • 29.4.2. APPLICATION AND PRODUCT DEVELOPERS
    • 29.4.3. PROPERTIES AND APPLICATIONS
      • 29.4.3.1. Fuel cells
      • 29.4.3.2. Hydrogen storage
    • 29.4.4. MARKET SIZE AND OPPORTUNITY
      • 29.4.4.1. Total market size
      • 29.4.4.2. Carbon nanomaterials opportunity
    • 29.4.5. CHALLENGES
  • 29.5. LED LIGHTING AND UVC
    • 29.5.1. MARKET DRIVERS AND TRENDS
      • 29.5.1.1. Need to develop low-cost lighting
      • 29.5.1.2. Environmental regulation
      • 29.5.1.3. Limited efficiency of phosphors in LEDs
      • 29.5.1.4. Shortcomings with LED lighting technologies
      • 29.5.1.5. Improving flexibility
      • 29.5.1.6. Improving performance and costs of UV-LEDs
    • 29.5.2. PROPERTIES AND APPLICATIONS
    • 29.5.3. MARKET SIZE AND OPPORTUNITY
      • 29.5.3.1. Total market size
      • 29.5.3.2. Carbon nanomaterials opportunity
      • 29.5.4. MARKET CHALLENGES
    • 29.5.5. APPLICATION AND PRODUCT DEVELOPERS
  • 29.6. OIL AND GAS EXPLORATION
    • 29.6.1. MARKET DRIVERS AND TRENDS
      • 29.6.1.1. Need to reduce operating costs and improve operation efficiency
      • 29.6.1.2. Increased demands of drilling environments
      • 29.6.1.3. Need for improved drilling fluids
      • 29.6.1.4. Increased exploration in extreme environments
      • 29.6.1.5. Environmental and regulatory
    • 29.6.2. PROPERTIES AND APPLICATIONS
      • 29.6.2.1. Sensing and reservoir management
      • 29.6.2.2. Coatings
      • 29.6.2.3. Drilling fluids
      • 29.6.2.4. Sorbent materials
      • 29.6.2.5. Separation
      • 29.6.2.6. Extraction
    • 29.6.3. MARKET SIZE AND OPPORTUNITY
      • 29.6.3.1. Total market size
      • 29.6.3.2. Nanotechnology and nanomaterials opportunity
    • 29.6.4. MARKET CHALLENGES
  • 29.7. APPLICATION AND PRODUCT DEVELOPERS
    • 29.7.1. Carbon nanotubes
    • 29.7.2. Graphene
    • 29.7.3. Nanocellulose

30. FILTRATION AND SEPARATION

  • 30.1. MARKET DRIVERS AND TRENDS
    • 30.1.1. Water shortage and population growth
    • 30.1.2. Need for improved and low cost membrane technology
    • 30.1.3. Need for improved groundwater treatment technologies
    • 30.1.4. Cost and efficiency
    • 30.1.5. Growth in the air filter market
    • 30.1.6. Need for environmentally, safe filters
  • 30.2. PROPERTIES AND APPLICTIONS
    • 30.2.1. Desalination and water filtration
    • 30.2.2. Gas separation
    • 30.2.3. Air filtration
    • 30.2.4. Virus filtration
  • 30.3. MARKET SIZE AND OPPORTUNITY
  • 30.4. MARKET CHALLENGES
    • 30.4.1.1. Uniform pore size and distribution
    • 30.4.1.2. Cost
  • 30.5. APPLICATION AND PRODUCT DEVELOPERS
    • 30.5.1. Carbon nanotubes
    • 30.5.2. Graphene
    • 30.5.3. Nanocellulose

31. LUBRICANTS

  • 31.1. MARKET DRIVERS AND TRENDS
    • 31.1.1. Need for new additives that provide “more for less”
    • 31.1.2. Need for higher-performing lubricants for fuel efficiency
    • 31.1.3. Environmental concerns
  • 31.2. PROPERTIES AND APPLICATIONS
  • 31.3. MARKET SIZE AND OPPORTUNITY
    • 31.3.1. Total market size
    • 31.3.2. Carbon nanomaterials opportunity
  • 31.4. CHALLENGES
  • 31.5. APPLICATION AND PRODUCT DEVELOPERS
    • 31.5.1. Carbon nanotubes
    • 31.5.2. Graphene

32. SENSORS

  • 32.1. MARKET DRIVERS AND TRENDS
    • 32.1.1. Increased power and performance with reduced cost
    • 32.1.2. Enhanced sensitivity
    • 32.1.3. Replacing silver electrodes
    • 32.1.4. Growth in the home diagnostics and point of care market
    • 32.1.5. Improved thermal stability
  • 32.2. PROPERTIES AND APPLICATIONS
    • 32.2.1. Gas sensors
    • 32.2.2. Strain sensors
    • 32.2.3. Biosensors
    • 32.2.4. Food sensors
    • 32.2.5. Infrared (IR) sensors
    • 32.2.6. Optical sensors
    • 32.2.7. Pressure sensors
    • 32.2.8. Humidity sensors
    • 32.2.9. Acoustic sensors
    • 32.2.10. Wireless sensors
  • 32.3. MARKET SIZE AND OPPORTUNITY
  • 32.4. MARKET CHALLENGES
  • 32.5. APPLICATION AND PRODUCT DEVELOPERS
    • 32.5.1. Carbon nanotubes
    • 32.5.2. Graphene

33. TEXTILES AND APPAREL

  • 33.1. MARKET DRIVERS AND TRENDS
    • 33.1.1. Growth in the wearable electronics market
    • 33.1.2. Growth in remote health monitoring and diagnostics
    • 33.1.3. Growth in the market for anti-microbial textiles
    • 33.1.4. Need to improve the properties of cloth or fabric materials
    • 33.1.5. Environmental and regulatory
    • 33.1.6. Reduction in size, appearance and cost of sensors
    • 33.1.7. Increasing demand for smart fitness clothing
    • 33.1.8. Improved medical analysis
    • 33.1.9. Smart workwear for improved worker safety
  • 33.2. PROPERTIES AND APPLICATONS
    • 33.2.1. Protective textiles
    • 33.2.2. Electronic textiles
  • 33.3. MARKET SIZE AND OPPORTUNITY
    • 33.3.1.1. Protective textiles
    • 33.3.1.2. Electronic textiles
  • 33.4. APPLICATION AND PRODUCT DEVELOPERS
    • 33.4.1. Carbon nanotubes
    • 33.4.2. Graphene

34. 3D PRINTING

  • 34.1. MARKET DRIVERS AND TRENDS
    • 34.1.1. Improved materials at lower cost
    • 34.1.2. Limitations of current thermoplastics
  • 34.2. PROPERTIES AND APPLICATIONS
  • 34.3. MARKET SIZE AND OPPORTUNITY
  • 34.4. CHALLENGES
  • 34.5. APPLICATION AND PRODUCT DEVELOPERS
    • 34.5.1. Carbon nanotubes
    • 34.5.2. Graphene
    • 34.5.3. Commercial activity

35. PAPER & BOARD

  • 35.1. Market drivers and trends
    • 35.1.1. Environmental
    • 35.1.2. Need to develop innovative new products in the paper and board industry
  • 35.2. Applications
    • 35.2.1.1. Paper packaging
    • 35.2.1.2. Paper coatings
    • 35.2.1.3. Anti-microbials
  • 35.3. Market size
  • 35.4. Nanocellulose opportunity
  • 35.5. Market challenges
  • 35.6. Commercial activity

36. AEROGELS

  • 36.1. Market drivers and trends
    • 36.1.1. Energy efficiency
    • 36.1.2. Demand for environmentally-friendly, lightweight materials
  • 36.2. Market size
  • 36.3. Applications
    • 36.3.1. Thermal insulation
    • 36.3.2. Medical
    • 36.3.3. Shape memory
  • 36.4. Product developers in aerogels

37. RHEOLOGY MODIFIERS

  • 37.1. Applications
    • 37.1.1. Food
    • 37.1.2. Pharmaceuticals
    • 37.1.3. Cosmetics
  • 37.2. Commercial activity

38. CARBON NANOTUBES PRODUCERS AND PRODUCT DEVELOPERS

  • 38.1. 3DX TECH
  • 38.2. ADVANCED DIAMOND TECHNOLOGIES
  • 38.3. ADVEN SOLUTIONS, INC.
  • 38.4. AD-NANO TECHNOLOGIES
  • 38.5. ADVANCED RESEARCH AND TECHNOLOGIES PTE
  • 38.6. AIXTRON SE
  • 38.7. ALFA AESAR
  • 38.8. ALPHA NANO TECH, INC.
  • 38.9. AMERICAN DYE SOURCE, INC
  • 38.10. ANEEVE NANOTECHNOLOGIES LLC
  • 38.11. APPLIED CARBON NANOTECHNOLOGY CO.
  • 38.12. APPLIED NANOSTRUCTURED SOLUTIONS, LLC
  • 38.13. APPLIED NANOTECH, INC./PEN, INC.
  • 38.14. ARCHIMEDES POLYMER TECHNOLOGIES
  • 38.15. AREVO, INC.
  • 38.16. ARKEMA, INC.
  • 38.17. ARRY NANO
  • 38.18. AVANZARE Innovacion Tecnologica S.L.
  • 38.19. BASF AG
  • 38.20. BATTELLE
  • 38.21. BBCP CONDUCTOR, INC.
  • 38.22. BIONEER CORPORATION
  • 38.23. BIOPHAN TECHNOLOGIES, INC.
  • 38.24. BIO-PACT LLC
  • 38.25. BST NANO CARBON LLC
  • 38.26. BLACK DIAMOND STRUCTURES LLC
  • 38.27. BNNT LLC
  • 38.28. BREWER SCIENCE
  • 38.29. BUCKEYE COMPOSITES
  • 38.30. BUCKY USA
  • 38.31. BYK-CHEMIE GMBH
  • 38.32. C3KKKKK NANO, INC.
  • 38.33. CANATU OY
  • 38.34. CARBON DESIGN INNOVATIONS INC.
  • 38.35. CARBON NANO EUROPE APS
  • 38.36. CARBON NANO MATERIAL TECHNOLOGY CO. LTD.
  • 38.37. CARBONICS, INC.
  • 38.38. CARBON SOLUTIONS, INC.
  • 38.39. CATALYTIC MATERIALS LLC
  • 38.40. CHEAPTUBES, INC.
  • 38.41. CHASM ADVANCED MATERIALS
  • 38.42. CHENGDU ORGANIC CHEMICALS CO., LTD
  • 38.43. CNM TECHNOLOGIES GMBH
  • 38.44. CNANO TECHNOLOGY LTD
  • 38.45. CNTOUCH
  • 38.46. CONTINENTAL CARBON COMPANY
  • 38.47. CVD EQUIPMENT CORPORATION
  • 38.48. DAINIPPON SCREEN MFG. CO., LTD.
  • 38.49. DAMASCUS FORTUNE TECHNOLOGIES
  • 38.50. DENSO CORPORATION
  • 38.51. EDEN ENERGY/HYTHANE
  • 38.52. EE NANOTECH
  • 38.53. EIKOS, INC.
  • 38.54. ENSYSCE BIOSCIENCES, INC
  • 38.55. FIBERMAX COMPOSITES
  • 38.56. FUJI PIGMENT CO., LTD.
  • 38.57. FUJIKURA LTD.
  • 38.58. FUJITSU LABORATORIES
  • 38.59. FURUKAWA ELECTRIC
  • 38.60. FUTURECARBON GMBH
  • 38.61. GENERAL NANO LLC
  • 38.62. GLONATECH S.A.
  • 38.63. GOODFELLOW CORPORATION
  • 38.64. GRAFENTEK
  • 38.65. GRAPHENANO S.L.
  • 38.66. GS NANOTECH CO., LTD.
  • 38.67. GSI CREOS CORPORATION
  • 38.68. HANWHA NANOTECH CO., LTD.
  • 38.69. HEJI, INC.
  • 38.70. HELIX MATERIAL SOLUTIONS, INC.
  • 38.71. HITACHI ZOSEN CORPORATION
  • 38.72. HODOGAYA CHEMICAL CO., LTD.
  • 38.73. HONJO CHEMICAL CORPORATION
  • 38.74. HYCARB, INC.
  • 38.75. HYPERION CATALYSIS CORPORATION, INC.
  • 38.76. IBM CORPORATION
  • 38.77. IDT INTERNATIONAL
  • 38.78. INNO-X GMBH
  • 38.79. INORGANIC SPECIALISTS, INC.
  • 38.80. IOLITEC IONIC LIQUIDS TECHNOLOGIES GMBH
  • 38.81. IRONBARK COMPOSITES
  • 38.82. IRRESISTIBLE MATERIALS LTD
  • 38.83. JNC
  • 38.84. JINING LEADERNANO TECH LLC
  • 38.85. KEMIX
  • 38.86. KH CHEMICALS, CO. LTD.
  • 38.87. KJ SPECIALTY PAPER CO., LTD.
  • 38.88. KLEAN INDUSTRIES INC.
  • 38.89. KOREA KUMHO PETROCHEMICAL CO., LTD
  • 38.90. LANXESS
  • 38.91. LG CHEMICAL
  • 38.92. LINDE ELECTRONICS
  • 38.93. LINTEC
  • 38.94. MEIJO NANO CARBON
  • 38.95. MER HOLDINGS LLC
  • 38.96. METIS DESIGN CORPORATION
  • 38.97. MITSUBISHI RAYON CO., LTD.
  • 38.98. MKNANO
  • 38.99. MOLECULAR REBAR DESIGN LLC
  • 38.100. MP BIOMEDICALS
  • 38.101. NANOMATERIALS LTD.
  • 38.102. N12KKKKK TECHNOLOGIES, INC.
  • 38.103. N-TEC
  • 38.104. NABOND TECHNOLOGIES CO., LTD.
  • 38.105. NACALAI TESQUE
  • 38.106. NANO-C
  • 38.107. NANOCOMP TECHNOLOGIES, INC.
  • 38.108. NANOCOMPOUND GMBH
  • 38.109. NANOCS
  • 38.110. NANO CUBE JAPAN CO., LTD.
  • 38.111. NANOCYL
  • 38.112. NANOGRAFI NANOTECHNOLOGY
  • 38.113. NANOINTEGRIS
  • 38.114. NANOLAB, INC.
  • 38.115. NANOMIX, INC.
  • 38.116. NANOSHEL LLC
  • 38.117. NANOSOLUTION CO., LTD.
  • 38.118. NANOSPERSE LLC
  • 38.119. NANOSTRUCTURED & AMORPHOUS MATERIALS, INC.
  • 38.120. NANOTECHLABS, INC.
  • 38.121. NANOTHINK SA
  • 38.122. NANOTOL D.O.O.
  • 38.123. NANO FRONTIER TECHNOLOGY
  • 38.124. NANTERO, INC.
  • 38.125. NATURAL NANO, INC.
  • 38.126. NAWA TECHNOLOGIES
  • 38.127. NEC CORPORATION
  • 38.128. NEOTECHPRODUCT RESEARCH AND PRODUCTION COMPANY LTD.
  • 38.129. NEW METALS AND CHEMICALS CORPORATION
  • 38.130. NIPPON CHEMI-CON CORPORATION
  • 38.131. NISSIN ELECTRIC CO., LTD.
  • 38.132. NITTA CORPORATION
  • 38.133. NITTO DENKO CORPORATION
  • 38.134. OCSIAL
  • 38.135. OSAKA GAS CO., LTD.
  • 38.136. PLASMA-X
  • 38.137. PLANARTECH
  • 38.138. PORIFERA, INC.
  • 38.139. Q-FLO LTD
  • 38.140. RAYMOR INDUSTRIES, INC.
  • 38.141. ROSSETER HOLDINGS LTD.
  • 38.142. RTP COMPANY CORPORATION
  • 38.143. RUSHFORD NANOELECTROCHEMISTRY CO.
  • 38.144. SELDON LABORATORIES
  • 38.145. SES RESEARCH
  • 38.146. SHENZHEN NANOTECH PORT CO., LTD.
  • 38.147. SHIMADZU COPORATION
  • 38.148. SHOWA DENKO K.K.
  • 38.149. SIGMA ALDRICH
  • 38.150. SKYSPRING NANOMATERIALS, INC.
  • 38.151. SOLARNO, INC.
  • 38.152. SP NANO LTD.
  • 38.153. STANFORD MATERIALS
  • 38.154. STREM CHEMICALS, INC
  • 38.155. SUMITOMO ELECTRIC INDUSTRIES LTD.
  • 38.156. SUN INNOVATIONS
  • 38.157. SUN NANOTECH CO., LTD.
  • 38.158. SUZHOU CREATIVE-CARBON NANOTECHNOLOGY CO., LTD.
  • 38.159. TAIWAN CARBON NANOTUBE TECHNOLOGY
  • 38.160. TAIYO NIPPON SANSO CORPORATION
  • 38.161. TAKENAKE SEISAKUSHO CO., LTD.
  • 38.162. TECO NANOTECH CO., LTD.
  • 38.163. TEIJIN ARAMID B.V.
  • 38.164. TESLA NANOCOATINGS LTD.
  • 38.165. TEXAS BIOCHEMICALS, INC.
  • 38.166. THOMAS SWAN & CO., LTD.
  • 38.167. TIE GMBH
  • 38.168. TOKUSHU TOKAI PAPER CO., LTD.
  • 38.169. TOKYO CHEMICAL INDUSTRY CO., LTD.
  • 38.170. TORAY INDUSTRIES, INC.
  • 38.171. TOSHIBA CORPORATION
  • 38.172. TOYO TANSO CO., LTD
  • 38.173. TOYOCOLOR CO., LTD.
  • 38.174. VITAMIN C60KKKKK BIORESEARCH CORPROATION
  • 38.175. XFNANO MATERIALS TECH CO., LTD
  • 38.176. XINTEK, INC.
  • 38.177. XINNANO MATERIALS, INC.
  • 38.178. XP NANO MATERIAL CO. LTD.
  • 38.179. YTC AMERICA, INC.
  • 38.180. ZEON CORPORATION
  • 38.181. ZEPTOR CORPORATION
  • 38.182. ZOZ GMBH
  • 38.183. ZYVEX TECHNOLOGIES

39. GRAPHENE PRODUCERS AND PRODUCT DEVELOPERS

  • 39.1. Producers and types of graphene produced matrix
  • 39.2. Graphene industrial collaborations
  • 39.3. 2D CARBON GRAPHENE MATERIAL CO., LTD.
  • 39.4. 2-DTECH LIMITED
  • 39.5. 3D GRAPHTECH INDUSTRIES
  • 39.6. ABALONYX AS
  • 39.7. ACS MATERIALS LLC
  • 39.8. ADEKA
  • 39.9. ADVANCED GRAPHENE PRODUCTS
  • 39.10. ADVANCED MICRO DEVICES, INC.
  • 39.11. ADV EN SOLUTIONS, INC.
  • 39.12. AD-NANO TECHNOLOGIES
  • 39.13. AGAR SCIENTIFIC
  • 39.14. AIXTRON SE
  • 39.15. AMERICAN GRAPHITE TECHNOLOGIES
  • 39.16. AMO GMBH
  • 39.17. ANDERLAB TECHNOLOGIES
  • 39.18. ANEEVE NANOTECHNOLOGIES LLC
  • 39.19. ANGSTRON MATERIALS LLC
  • 39.20. APEX GRAPHENE LLC
  • 39.21. APPLIED GRAPHENE MATERIALS PLC
  • 39.22. APPLIED NANOLAYERS BV
  • 39.23. APPLY NANOSOLUTIONS S.L.
  • 39.24. AR BROWN CO. LTD.
  • 39.25. ARCHIMEDES POLYMER TECHNOLOGIES
  • 39.26. ARVIA TECHNOLOGY
  • 39.27. ASBURY CARBONS
  • 39.28. AVANZARE
  • 39.29. AZTRONG, INC.
  • 39.30. BASF AG
  • 39.31. BEIJING CARBON CENTURY TECHNOLOGY LTD
  • 39.32. BGT MATERIALS LIMTED
  • 39.33. BIOPHARMA CHEMICALS
  • 39.34. BLUEVINE GRAPHENE INDUSTRIES, INC.
  • 39.35. BST NANO CARBON LLC
  • 39.36. BTR NEW ENERGY MATERIALS INC.
  • 39.37. CABOT COPORATION
  • 39.38. CALIFORNIA LITHIUM BATTERY, INC.
  • 39.39. CALEVIA, INC.
  • 39.40. CAMBRIDGE NANOSYSTEMS
  • 39.41. CARBON BLUE TECHNOLOGIES
  • 39.42. CARBON NANO-MATERIAL TECHNOLOGY CO., LTD.
  • 39.43. CARBON SCIENCES, INC.
  • 39.44. CEALTECH
  • 39.45. CEMTREX, INC
  • 39.46. CHINA CARBON GRAPHITE GROUP
  • 39.47. CHONGQING MOXI SCIENCE AND TECHNOLOGY CO., LTD.
  • 39.48. CRAYONANO AS
  • 39.49. CVD EQUIPMENT CORPORATION
  • 39.50. DANUBIA NANOTECH S.R.O
  • 39.51. DAS-NANO
  • 39.52. DEYANG CARBONENE TECHNOLOGY
  • 39.53. DIRECTA PLUS SPA
  • 39.54. ELCORA ADVANCED MATERIALS
  • 39.55. ENANOTEC
  • 39.56. ENERGIZER RESOURCES, INC.
  • 39.57. EPL COMPOSITE SOLUTIONS LTD.
  • 39.58. ESKAGON GROUP LTD.
  • 39.59. FANGDA CARBON NEW MATERIAL CO., LTD.
  • 39.60. FLEXENABLE LTD
  • 39.61. FLEXEGRAPH 2D MATERIALS
  • 39.62. FLEXTRAPOWER
  • 39.63. FOCUS GRAPHITE INC.
  • 39.64. FUJITSU LABORATORIES
  • 39.65. GARMOR, INC.
  • 39.66. GENERAL GRAPHENE CORPORATION
  • 39.67. GNANOMAT S.L.
  • 39.68. GNEXT S.A.S.
  • 39.69. GRAFEN CHEMICAL INDUSTRIES CP.
  • 39.70. GRAFENTEK
  • 39.71. GRAFTECH INTERNATIONAL
  • 39.72. GRAFOID, INC.
  • 39.73. GRANPH NANOTEC
  • 39.74. GRAPHENANO S.L.
  • 39.75. GRAPHENDO LTD.
  • 39.76. GRAPHENERA PTY. LTD.
  • 39.77. GRAPHENEX UK LTD.
  • 39.78. GRAPHENE 3D LAB INC.
  • 39.79. GRAPHENE ESD CORPORATION
  • 39.80. GRAPHENE FRONTIERS
  • 39.81. GRAPHENE INDUSTRIES LTD.
  • 39.82. GRAPHENE LEADERS CANADA
  • 39.83. GRAPHENE NANOCHEM PLC
  • 39.84. GRAPHENE NANOTECH S.L.
  • 39.85. GRAPHENE PLATFORM
  • 39.86. GRAPHENE SENSORS, INC
  • 39.87. GRAPHENE SEMICONDUCTOR SERVICES PVT. LTD.
  • 39.88. GRAPHENE SQUARE
  • 39.89. GRAPHENE TECHNOLOGIES
  • 39.90. GRAPHENETECH
  • 39.91. GRAPHENEA NANOMATERIALS
  • 39.92. GRAPHENHEX
  • 39.93. GRAPHENSIC AB
  • 39.94. GRAPHITE ZERO PTE. LTD.
  • 39.95. GRAPHOS
  • 39.96. GROLLTREX
  • 39.97. GROUP NANOXPLORE INC.
  • 39.98. HANGZHOU GELANFENG NANOTECHNOLOGY
  • 39.99. HANWHA CHEMICAL
  • 39.100. HARBIN MULAN
  • 39.101. HARPER INTERNATIONAL CORP.
  • 39.102. HAYDALE LIMITED
  • 39.103. HAZER GROUP LIMITED
  • 39.104. HERAEUS
  • 39.105. HQ GRAPHENE
  • 39.106. HRL LABORATORIES, LLC
  • 39.107. IBM CORPORATION
  • 39.108. IDT INTERNATIONAL
  • 39.109. IEDISA
  • 39.110. IMAGINE INTELLIGENT MATERIALS PTY LIMITED
  • 39.111. INCUBATION ALLIANCE INC.
  • 39.112. INNOPHENE
  • 39.113. INTEL CORPORATION
  • 39.114. IONIC INDUSTRIES
  • 39.115. JIANGSU YUEDA NEW MATERIAL TECHNOLOGY CO., LTD
  • 39.116. JINAN MOXI NEW MATERIAL TECHNOLOGY CO., LTD
  • 39.117. JINING LEADERNANO TECH LLC
  • 39.118. LASLUMIN LLC
  • 39.119. MEIJO NANO CARBON
  • 39.120. MERCK PERFORMANCE MATERIALS
  • 39.121. MEXPLORER CO., LTD.
  • 39.122. NANJING JCNANO CO., LTD.
  • 39.123. NANJING SCF NANOTECH, LTD.
  • 39.124. NANO CARBON SP. Z.O.O.
  • 39.125. NANOGRAFEN
  • 39.126. NANOGRAFI NANOTECHNOLOGY
  • 39.127. NANOINNOVA TECHNOLOGIES SL
  • 39.128. NANOQUIMIA S.L.
  • 39.129. NANOINTEGRIS
  • 39.130. NANOSPERSE LLC
  • 39.131. NANOSTRUCTURED & AMORPHOUS MATERIALS, INC.
  • 39.132. NANOTECH BIOMACHINES, INC.
  • 39.133. NATIONAL NANOMATERIALS
  • 39.134. NINGBO MORSH TECHNOLOGY CO., LTD.
  • 39.135. NOKIA
  • 39.136. OSAKA GAS CHEMICALS CO., LTD.
  • 39.137. OVATION POLYMERS
  • 39.138. PAIDEA, LLC
  • 39.139. PEN, INC
  • 39.140. PERPETUUS ADVANCED MATERIALS PLC
  • 39.141. PLANARTECH
  • 39.142. POSCO
  • 39.143. POWERBOOSTER TECHNOLOGY
  • 39.144. QUANTUM SEED LLC
  • 39.145. QINGDAO HUAGAO ENERGY TECHNOLOGY CO., LTD
  • 39.146. R-NANO
  • 39.147. RS MINES
  • 39.148. SAMSUNG ELECTRONICS CO., LTD.
  • 39.149. SANDISK CORPORATION
  • 39.150. SENSIA
  • 39.151. SER GRAPHITECH
  • 39.152. SHANGHAI SIMBATT ENERGY TECHNOLOGY CO., LTD.
  • 39.153. SHT SMART HIGHT TECH AB
  • 39.154. SINOCARBON MATERIALS TECHNOLOGY CO., LTD.
  • 39.155. SINODE SYSTEMS
  • 39.156. THE SIXTH ELEMENT MATERIALS TECHNOLOGY CO. LTD.
  • 39.157. SKELETON TECHNOLOGIES
  • 39.158. SOLAN CORP
  • 39.159. SOLARIS PHOTONICS
  • 39.160. SUPERC TECHNOLOGY LTD.
  • 39.161. STREM CHEMICALS
  • 39.162. SUNVAULT ENERGY INC.
  • 39.163. TAIWAN CARBON NANOTUBE TECHNOLOGY
  • 39.164. TAIZHOU SUNANO NEW ENERGY CORPORATION
  • 39.165. TALGA RESOURCES
  • 39.166. TATA STEEL
  • 39.167. TEXAS INSTRUMENTS, INC.
  • 39.168. THERAGNOSTIC TECHNOLOGIES, INC.
  • 39.169. THOMAS SWAN & CO. LTD.
  • 39.170. TIANJIN PULAN NANO TECHNOLOGIES LTD
  • 39.171. TRITON MATERIALS LTD.
  • 39.172. TRUE 2KKKKK MATERIALS PTE. LTD.
  • 39.173. UGENT TECH SDN BHD
  • 39.174. UNIVALOR
  • 39.175. UNIVERSITY OF EXETER
  • 39.176. VALENCE INDUSTRIES LIMITED
  • 39.177. VORBECK MATERIALS CORPORATION
  • 39.178. WAVVE STREAM
  • 39.179. WEEBIT NANO LTD.
  • 39.180. WUXI GRAPHENE FILM CO., LTD
  • 39.181. XEFRO
  • 39.182. XF NANO
  • 39.183. XG SCIENCES
  • 39.184. XIAMEN G-CVD MATERIAL TECHNOLOGY CO., LTD.
  • 39.185. XIAMEN KNANO
  • 39.186. XOLVE, INC.
  • 39.187. ZAPGOCHARGER LTD.

40. NANOCELLULOSE COMPANY PROFILES

  • 40.1. Producers and types of nanocellulose produced (NCF, NCC, BCC)
    • 40.1.1. Target markets for producers
  • 40.2. NANOFIBRILLAR CELLULOSE (NFC) PRODUCERS
    • 40.2.1. American Process, Inc.
      • 40.2.1.1. Products
      • 40.2.1.2. Production capacity
      • 40.2.1.3. Production process
      • 40.2.1.4. Commercial applications and target markets
      • 40.2.1.5. Contact details
    • 40.2.2. Ashai Kasei Chemicals Corporation
      • 40.2.2.1. Products
      • 40.2.2.2. Production capacity
      • 40.2.2.3. Production process
      • 40.2.2.4. Commercial applications and target markets
      • 40.2.2.5. Contact details
    • 40.2.3. Borregaard Chemcell
      • 40.2.3.1. Products
      • 40.2.3.2. Production capacity
      • 40.2.3.3. Production process
      • 40.2.3.4. Commercial applications and targer markets
      • 40.2.3.5. Contact details
    • 40.2.4. Cellucomp Ltd.
      • 40.2.4.1. Products
      • 40.2.4.2. Production capacity
      • 40.2.4.3. Production process
      • 40.2.4.4. Commercial applications and target markets
      • 40.2.4.5. Contact details
    • 40.2.5. Chuetsu Pulp & Paper Co., Ltd.
      • 40.2.5.1. Products
      • 40.2.5.2. Production capacity
      • 40.2.5.3. Production process
      • 40.2.5.4. Commercial applications and target markets
      • 40.2.5.5. Contact details
    • 40.2.6. Daicel Corporation
      • 40.2.6.1. Products
      • 40.2.6.2. Production capacity
      • 40.2.6.3. Production process
    • 1.3.1.1. Commercial applications and target markets
      • 40.2.6.4. Contact details
    • 40.2.7. Daio Paper Corporation
      • 40.2.7.1. Products
      • 40.2.7.2. Production capacity
      • 40.2.7.3. Production process
      • 40.2.7.4. Commercial applications and target markets
      • 40.2.7.5. Contact details
    • 40.2.8. DIC Products, Inc.
      • 40.2.8.1. Products
      • 40.2.8.2. Scale of facility
      • 40.2.8.3. Production process
      • 40.2.8.4. Commercial applications and target markets, applications targeted and stage of commercialization
      • 40.2.8.5. Contact details
    • 40.2.9. DKS Co. Ltd.
      • 40.2.9.1. Products
      • 40.2.9.2. Production capacity
      • 40.2.9.3. Production process
      • 40.2.9.4. Commercial applications and target markets, applications targeted and stage of commercialization
      • 40.2.9.5. Contact details
    • 40.2.10. Imerys
      • 40.2.10.1. Products
      • 40.2.10.2. Scale of facility
      • 40.2.10.3. Production process
      • 40.2.10.4. Commercial applications and target markets
      • 40.2.10.5. Contact details
    • 40.2.11. Innventia AB
      • 40.2.11.1. Products
      • 40.2.11.2. Production capacity
      • 40.2.11.3. Production process
      • 40.2.11.4. Commercial applications and target markets
      • 40.2.11.5. Contact details
    • 40.2.12. Kruger Bioproducts, Inc.
      • 40.2.12.1. Products
      • 40.2.12.2. Production capacity
      • 40.2.12.3. Production process
      • 40.2.12.4. Commercial applications and target markets
      • 40.2.12.5. Contact details
    • 40.2.13. Nippon Paper Group, Inc.
      • 40.2.13.1. Products
      • 40.2.13.2.Production capacity
      • 40.2.13.3.Production process
      • 40.2.13.4.Commercial applications and target markets
      • 40.2.13.5.Contact details
    • 40.2.14. Oji Paper Company Ltd.
      • 40.2.14.1. Products
      • 40.2.14.2. Production capacity
      • 40.2.14.3. Production process
      • 40.2.14.4. Commercial applications and target markets
      • 40.2.14.5. Contact details
    • 40.2.15. Paperlogic
      • 40.2.15.1. Products
      • 40.2.15.2. Produciton capacity
      • 40.2.15.3. Production process
      • 40.2.15.4. Commercial applications and target markets, applications targeted and stage of commercialization
      • 40.2.15.5. Contact details
    • 40.2.16. Performance BioFilaments Inc.
      • 40.2.16.1. Products
      • 40.2.16.2. Production capacity
      • 40.2.16.3. Production process
      • 40.2.16.4. Commercial applications and target markets
      • 40.2.16.5. Contact details
    • 40.2.17. Seiko PMC Corporation
      • 40.2.17.1. Products
      • 40.2.17.2. Production capacity
      • 40.2.17.3. Production process
      • 40.2.17.4. Commercial applications and target markets
      • 40.2.17.5. Contact details
    • 40.2.18. Stora Enso Ltd.
      • 40.2.18.1. Products
      • 40.2.18.2. Production capacity
      • 40.2.18.3. Production process
      • 40.2.18.4. Commercial applications and target markets
      • 40.2.18.5. Contact details
    • 40.2.19. Sugino Machine Limited
      • 40.2.19.1. Products
      • 40.2.19.2. Production capacity
      • 40.2.19.3. Production process
      • 40.2.19.4. Commercial appliations and target markets
      • 40.2.19.5. Contact details
    • 40.2.20. University of Maine
      • 40.2.20.1. Products
      • 40.2.20.2. Production capacity
      • 40.2.20.3. Production process
      • 40.2.20.4. Commercial applications and target markets
      • 40.2.20.5. Contact details
    • 40.2.21. UPM-Kymmene
      • 40.2.21.1. Products
      • 40.2.21.2. Production capacity
      • 40.2.21.3. Production process
      • 40.2.21.4. Commercial applications and target markets
      • 40.2.21.5. Contact details
    • 40.2.22. US Forest Service Forest Products Laboratory
      • 40.2.22.1. Products
      • 40.2.22.2. Production capacity
      • 40.2.22.3. Production process
      • 40.2.22.4. Commercial applications and target markets
      • 40.2.22.5. Contact details
    • 40.2.23. VTT Technical Research Centre
      • 40.2.23.1. Products
      • 40.2.23.2. Production capacity
      • 40.2.23.3. Production process
      • 40.2.23.4. Commercial applications and target markets
      • 40.2.23.5. Contact details
    • 40.2.24. Zelfo Technology GmbH
      • 40.2.24.1. Products
      • 40.2.24.2. Production capacity
      • 40.2.24.3. Production process
      • 40.2.24.4. Commercial applications and target markets
      • 40.2.24.5. Contact details
      • 40.3. CELLULOSE NANOCRYSTAL (CNC) PRODUCERS
    • 40.3.1. Blue Goose Biorefineries, Inc.
      • 40.3.1.1. Products
      • 40.3.1.2. Production capacity
      • 40.3.1.3. Production process
      • 40.3.1.4. Commercial applications and target markets
      • 40.3.1.5. Contact detals
    • 40.3.2. Celluforce, Inc.
      • 40.3.2.1. Products
      • 40.3.2.2. Production capacity
      • 40.3.2.3. Production process
      • 40.3.2.4. Commercial applications and target markets
      • 40.3.2.5. Contact detals
    • 40.3.3. Melodea/Holmen
      • 40.3.3.1. Products
      • 40.3.3.2. Production capacity
      • 40.3.3.3. Production process
      • 40.3.3.4. Commercial applications and target markets
      • 40.3.3.5. Contact details
    • 40.3.3. Renmatrix, Inc.
      • 40.3.3.1. Products
      • 40.3.3.2. Production capacity
      • 40.3.3.3. Production process
      • 40.3.3.4. Commercial applications and target markets
      • 40.4. BACTERIAL CELLULOSE (BC) PRODUCERS
    • 40.4.1. Axcelion Biopolymers Corporation
      • 40.4.1.1. Products
      • 40.4.1.2. Comercial applications and target markets
      • 40.4.1.3. Contact details
    • 40.4.2. Bowil Biotech
      • 40.4.2.1. Products
      • 40.4.2.2. Target markets
      • 40.4.2.3. Contact details
    • 40.5.1. DePuy Synthes Biomaterials
      • 40.5.1.1. Products
      • 40.5.1.2. Target markets
      • 40.5.1.3. Contact details
    • 40.4.4. FZMB GmbH
      • 40.4.4.1. Products
      • 40.4.4.2. Target markets
      • 40.4.4.3. Contact details
    • 40.4.5. Jenpolymers Ltd.
      • 40.4.5.1. Products
      • 40.4.5.2. Target markets
      • 40.4.5.3. Contact details
  • 40.5. OTHER PRODUCERS AND APPLICATION DEVELOPERS
    • 40.5.1. Betulium Oy
    • 40.5.2. Cellulose Lab
    • 40.5.3. Cellutech AB
    • 40.5.4. Centre Technique Du Papier/ Institut Technologique FCBA
    • 40.5.5. Cerealus Holdings LLC
    • 40.5.6. Denso Corporation
    • 40.5.7. FMC Biopolymer
    • 40.5.8. Greencore Composites, Inc.
    • 40.5.9. J.Rettenmaier & Sohne GmbH
    • 40.5.10. The Japan Steel Works, Ltd.
    • 40.5.11. JeNaCell GmbH
    • 40.5.12. Nanocrete Technologies
    • 40.5.13. Natural Friend
    • 40.5.14. Norske Skog ASA
    • 40.5.15. Poly-Ink
    • 40.5.16. Polynew, Inc.
    • 40.5.17. Sappi Limited
    • 40.5.18. Tianjin Haojia Cellulose Co., Ltd.
    • 40.5.19. Valentis Nanotech
    • 40.5.20. Verso Corporation

41. REFERENCES

TABLES

  • Table 1: Nanomaterials scorecard for carbon nanotubes
  • Table 2: Market summary for carbon nanotubes-Selling grade particle diameter, usage, advantages, average price/ton, high volume applications, low volume applications and novel applications
  • Table 3: Properties of CNTs and comparable materials
  • Table 4: Annual production capacity of MWNT and SWNT producers
  • Table 5: SWNT producers production capacities 2015
  • Table 6: Global production of carbon nanotubes, 2010-2025 in tons/year. Base year for projections is 2014
  • Table 7: Consumer products incorporating graphene
  • Table 8: Graphene target markets-Applications potential addressable market size
  • Table 9: Graphene producers annual production capacities
  • Table 10: Global production of graphene, 2010-2025 in tons/year. Base year for projections is 2014
  • Table 11: Graphene types and cost per kg
  • Table 12: Markets and applications for nanocellulose
  • Table 13: Nanocellulose production plants worldwide and production status
  • Table 15: Market summary for nanocellulose-Selling grade particle diameter, usage, advantages, average price/ton, market estimates, global consumption, main current applications, future applications
  • Table 16: Categorization of nanomaterials
  • Table 17: Comparison between single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes
  • Table 18: Properties of carbon nanotubes
  • Table 19: Properties of graphene
  • Table 20: Graphene quantum dot producers
  • Table 22: Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2
  • Table 23: Markets and applications of phosphorene
  • Table 24: Markets and applications of C2N
  • Table 25: Markets and applications of hexagonal boron-nitride
  • Table 26: Markets and applications of graphdiyne
  • Table 27: Markets and applications of graphane
  • Table 28: Markets and applications of hexagonal boron-nitride
  • Table 29: Markets and applications of MoS2
  • Table 30: Markets and applications of Rhenium disulfide (ReS2) and diselenide (ReSe2)
  • Table 31: Markets and applications of silicene
  • Table 32: Markets and applications of stanene/tinene
  • Table 33: Markets and applications of tungsten diselenide
  • Table 34: Nanocellulose properties
  • Table 35: Applications of nanofibrillar cellulose (NFC)
  • Table 36: Production methods of NFC producers
  • Table 37: Applications of nanocrystalline cellulose (NCC)
  • Table 38: Applications of bacterial cellulose (BC)
  • Table 39: Microcrystalline cellulose (MCC) preparation methods, resulting materials and applications
  • Table 40: Microfibrillated cellulose (MFC) preparation methods, resulting materials and applications
  • Table 41: Nanofibrillated cellulose (MFC) preparation methods, resulting materials and applications
  • Table 42: Cellulose nanocrystals (MFC) preparation methods, resulting materials and applications
  • Table 43: Cellulose nanocrystals (MFC) preparation methods, resulting materials and applications
  • Table 44: Properties and applications of nanocellulose
  • Table 45: Comparative properties of carbon materials
  • Table 46: Comparative properties of graphene with nanoclays and carbon nanotubes
  • Table 47: Competitive analysis of Carbon nanotubes and graphene by application area and potential impact by 2025
  • Table 48: SWNT synthesis methods
  • Table 49: Large area graphene films-Markets, applications and current global market
  • Table 50: Graphene oxide flakes/graphene nanoplatelets-Markets, applications and current global market
  • Table 51: Main production methods for graphene
  • Table 52: Graphene synthesis methods, by company
  • Table 53: Properties of cellulose nanofibrils relative to metallic and polymeric materials
  • Table 54: Nanocellulose nanocrystal sources and scale
  • Table 55: Nanofibrillated cellulose production methods
  • Table 56: Cellulose nanocrystals (NCC) production methods
  • Table 57: Carbon nanotubes market structure
  • Table 58: Graphene market structure
  • Table 59: Nanocellulose market structure
  • Table 60: Current and potential end users for nanocellulose, by market and company
  • Table 61: Current and potential nanocellulose end users
  • Table 62: National nanomaterials registries in Europe
  • Table 63: Nanomaterials regulatory bodies in Australia
  • Table 64: Top ten countries based on number of nanotechnology patents in USPTO 2014-2015
  • Table 65: Published patent publications for graphene, 2004-2014
  • Table 66: Leading graphene patentees
  • Table 67: Industrial graphene patents in 2014
  • Table 68: Published patent publications for nanocellulose, 1997-2013
  • Table 69: Nanocellulose patents as of May 2015
  • Table 70: Research publications on nanocellulose materials and composites, 1996-2013
  • Table 71: Nanocellulose patents by organisation
  • Table 72: Nanocellulose patents by organisation, 2014
  • Table 73: Main patent assignees for NCC, as of May 2015
  • Table 74: Main patent assignees for NFC, as of May 2015
  • Table 75: Main patent assignees for BCC, as of May 2015
  • Table 76: Production volumes of carbon nanotubes (tons), 2010-2025
  • Table 77: Annual production capacity of MWNT producers
  • Table 78: SWNT producers production capacities 2015
  • Table 79: Example carbon nanotubes prices
  • Table 80: Markets, benefits and applications of Carbon Nanotubes
  • Table 81: Potential market penetration and volume estimates (tons) for graphene in key applications
  • Table 82: Global production of graphene, 2010-2025 in tons/year. Base year for projections is 2014
  • Table 83: Graphene producers and production capacity (Current and projected), prices and target markets
  • Table 86: Production capacities of CNF producers per annum in tons, current and planned
  • Table 87: Production capacities of CNC producers per annum in tons, current and planned
  • Table 88: Markets and applications for nanocellulose
  • Table 89: Product/price/application matrix of nanocellulose producers
  • Table 90: Graphene properties relevant to application in adhesives
  • Table 91: Applications in adhesives, by carbon nanomaterials type and benefits thereof
  • Table 92: Carbon nanomaterials in the adhesives market-applications, stage of commercialization and estimated economic impact
  • Table 93: Market challenges rating for nanotechnology and nanomaterials in the adhesives market
  • Table 94: Carbon nanotubes product and application developers in the adhesives industry
  • Table 95: Graphene product and application developers in the adhesives industry
  • Table 96: Applications in aerospace composites, by carbon nanomaterials type and benefits thereof
  • Table 97: Applications in aerospace coatings, by carbon nanomaterials type and benefits thereof
  • Table 98: Carbon nanomaterials in the aerospace market-applications, stage of commercialization and estimated economic impact
  • Table 99: Market challenges rating for high impact nanomaterials in the aerospace market
  • Table 100: Carbon nanotubes product and application developers in the aerospace industry
  • Table 101: Graphene product and application developers in the aerospace industry
  • Table 102: Applications of natural fiber composites in vehicles by manufacturers
  • Table 103: Applications in automotive composites, by carbon nanomaterials type and benefits thereof
  • Table 104: Nanocoatings applied in the automotive industry
  • Table 105: Application markets, competing materials, high impact nanomaterials advantages and current market size in the automotive sector
  • Table 106: Carbon nanomaterials in the automotive market-applications, stage of commercialization and estimated economic impact
  • Table 107: Market opportunity assessment for nanocellulose in the automotive industry
  • Table 108: Applications and commercilization challenges in the automotive market for high impact nanomaterials
  • Table 109: Market challenges rating for high impact nanomaterials in the automotive market
  • Table 110: Carbon nanotubes product and application developers in the automotive industry
  • Table 111: Graphene product and application developers in the automotive industry
  • Table 112: Companies developing Nanocellulose products in the automotive industry, applications targeted and stage of commercialization
  • Table 113: CNTs in life sciences and biomedicine
  • Table 114: Graphene properties relevant to application in biomedicine and healthcare
  • Table 115: Nanotechnology and nanomaterials opportunity in the drug formulation and delivery market-applications, stage of commercialization and estimated economic impact
  • Table 116: Nanotechnology and nanomaterials opportunity in medical implants and devices market-applications, stage of commercialization and estimated economic impact
  • Table 117: Nanotechnology and nanomaterials opportunity in the wound care market-applications, stage of commercialization and estimated economic impact
  • Table 118: Carbon nanotubes product and application developers in the medical and healthcare industry
  • Table 119: Graphene product and application developers in the biomedical and healthcare industry
  • Table 120: Nanocellulose product developers in medical and healthcare applications
  • Table 121: Properties of nanocoatings
  • Table 122: Graphene properties relevant to application in coatings
  • Table 123: Markets for nanocoatings
  • Table 124: Carbon nanotubes in the coatings market-applications, stage of commercialization and addressable market size
  • Table 125: Graphene and 2D materials in the coatings market-applications, stage of commercialization and estimated economic impact
  • Table 126: Market assessment for nanocellulose in coatings and films
  • Table 127: Application markets, competing materials, nanocellulose advantages and current market size in coatings and films
  • Table 128: Market opportunity assessment for nanocellulose in coatings and films
  • Table 129: Carbon nanotubes product and application developers in the coatings industry
  • Table 130: Graphene product and application developers in the coatings industry
  • Table 131: Companies developing NFC products in paper coatings and non-packaging coating products, applications targeted and stage of commercialization
  • Table 132: Examples of antimicrobial immobilization into cellulose nanofibers
  • Table 133: Graphene properties relevant to application in polymer composites
  • Table 134: Applications in polymer composites, by carbon nanomaterials type and benefits thereof
  • Table 135: Equivalent cost of nanocellulose and competitive materials in polymer composites
  • Table 136: Applications of nanocellulose in polymer composites by cellulose type
  • Table 137: Oxygen permeability of nanocellulose films compared to those made form commercially available petroleum based materials and other polymers
  • Table 138: Applications in ESD and EMI shielding composites, by carbon nanomaterials type and benefits thereof
  • Table 139: Applications in thermal management composites, by carbon nanomaterials type and benefits thereof
  • Table 140: Applications in rubber and elastomers, by carbon nanomaterials type and benefits thereof
  • Table 141: Potential addressable market size for carbon nanomaterials composites in tons
  • Table 142: Carbon nanomaterials in the composites market-applications, stage of commercialization and estimated economic impact
  • Table 143: Market assessment for nanocellulose in polymer composites
  • Table 144: Market opportunity assessment for nanocellulose in polymer composites
  • Table 145: Limitations of nanocellulose in the development of polymer nanocomposites
  • Table 146: Market challenges rating for high impact nanomaterials in the composites market
  • Table 148: Carbon nanotubes product and application developers in the composites industry
  • Table 149: Graphene product and application developers in the composites industry
  • Table 150: Companies developing nanocellulose products in bio packaging, applications targeted and stage of commercialization
  • Table 151: Comparison of ITO replacements
  • Table 152: Properties of SWNTs and graphene relevant to flexible electronics
  • Table 153: Comparative cost of TCF materials
  • Table 154: Graphene properties relevant to application in sensors
  • Table 155: Applications in flexible and stretchable health monitors, by nanomaterials type and benefits thereof
  • Table 156: Applications in patch-type skin sensors, by nanomaterials type and benefits thereof
  • Table 157: Application markets, competing materials, nanomaterials advantages and current market size in flexible substrates
  • Table 158: Market assessment for nanocellulose in the flexible and printed electronics sector
  • Table 159: Market opportunity assessment for Nanocellulose in flexible electronics
  • Table 160: Global market for wearables, 2014-2021, units and US$
  • Table 161: Potential addressable market for smart textiles and wearables in medical and healthcare
  • Table 162: Potential addressable market for thin film, flexible and printed batteries
  • Table 163: Market assessment for the nanotechnology in the wearable energy storage (printed and flexible battery) market
  • Table 164: Market assessment for the nanotechnology in the wearable energy harvesting market
  • Table 165: Market challenges rating for high impact nanomaterials in the flexible electronics, conductive films and displays market
  • Table 166: Carbon nanotubes product and application developers in transparent conductive films and displays
  • Table 167: Graphene product and application developers in in flexible electronics, flexible conductive films and displays
  • Table 168: Companies developing Nanocellulose products in paper electronics, applications targeted and stage of commercialization
  • Table 169: Comparative properties of conductive inks
  • Table 170: Applications in conductive inks by nanomaterials type and benefits thereof
  • Table 171: Opportunities for nanomaterials in printed electronics
  • Table 172: Nanomaterials in the conductive inks market-applications, stage of commercialization and estimated economic impact
  • Table 173: Market challenges rating for nanotechnology and nanomaterials in the conductive inks market
  • Table 174: Carbon nanotubes product and application developers in conductive inks
  • Table 175: Graphene product and application developers in conductive inks
  • Table 176: Comparison of Cu, CNTs and graphene as interconnect materials
  • Table 177: Applications in transistors, integrated circuits and other components, by carbon nanomaterials type and benefits thereof
  • Table 178: Carbon nanomaterials in the transistors, integrated circuits and other components market-applications, stage of commercialization and estimated economic impact
  • Table 179: Market challenges rating for nanotechnology and nanomaterials in the transistors, integrated circuits and other components market
  • Table 180: Carbon nanotubes product and application developers in integrated circuits, transistors and other components
  • Table 181: Graphene product and application developers in transistors and integrated circuits
  • Table 182: Nanotechnology and nanomaterials in the memory devices market-applications, stage of commercialization and estimated economic impact
  • Table 183: Carbon nanotubes product and application developers in memory devices
  • Table 184: Graphene product and application developers in memory devices
  • Table 185: Applications in photonics, by nanomaterials type and benefits thereof
  • Table 186: Graphene properties relevant to application in optical modulators
  • Table 187: Nanotechnology and nanomaterials in the photonics market-applications, stage of commercialization and estimated economic impact
  • Table 188: Market challenges rating for nanotechnology and nanomaterials in the photonics market
  • Table 189: Graphene product and application developers in photonics
  • Table 190: Applications in LIB, by carbon nanomaterials type and benefits thereof
  • Table 191: Applications in lithium-air batteries, by carbon nanomaterials type and benefits thereof
  • Table 192: Applications in sodium-ion batteries, by nanomaterials type and benefits thereof
  • Table 193: Carbon nanomaterials opportunity in the batteries market-applications, stage of commercialization and estimated economic impact
  • Table 194: Market challenges in batteries
  • Table 195: Market challenges rating for nanotechnology and nanomaterials in the batteries market
  • Table 196: Carbon nanomaterials application and product developers in batteries
  • Table 197: Comparative properties of graphene supercapacitors and lithium-ion batteries
  • Table 198: Properties of carbon materials in high-performance supercapacitors
  • Table 199: Carbon nanomaterials in the supercapacitors market-applications, stage of commercialization and estimated economic impact
  • Table 200: Carbon nanomaterials application developers in supercapacitors
  • Table 201: Applications in solar, by carbon nanomaterials type and benefits thereof
  • Table 202: Applications in solar coatings, by carbon nanomaterials type and benefits thereof
  • Table 203: Nanotechnology and nanomaterials in the solar market-applications, stage of commercialization and estimated economic impact
  • Table 204: Market challenges for nanomaterials in solar
  • Table 205: Market challenges rating for nanotechnology and nanomaterials in the solar market
  • Table 206: Carbon nanomaterials application developers in solar
  • Table 207: Carbon nanonomaterials application and product developers in fuel cells and hydrogen storage
  • Table 208: Applications in fuel cells, by carbon nanomaterials type and benefits thereof
  • Table 209: Applications hydrogen storage, by carbon nanomaterials type and benefits thereof
  • Table 210: Carbon nanomaterials in the fuel cells and hydrogen storage market-applications, stage of commercialization and estimated economic impact
  • Table 211: Applications in lighting, by carbon nanomaterials type and benefits thereof
  • Table 212: Carbon nanomaterials in the lighting and UVC market-applications, stage of commercialization and estimated economic impact
  • Table 213: Market challenges rating for nanotechnology and nanomaterials in the lighting and UVC market
  • Table 214: Carbon nanomaterials application developers in lighting
  • Table 215: Applications in sensing and reservoir management, by carbon nanomaterials type and benefits thereof
  • Table 216: Applications in oil & gas exploration coatings, by carbon nanomaterials type and benefits thereof
  • Table 217: Applications in oil & gas exploration drilling fluids, by carbon nanomaterials type and benefits thereof
  • Table 218: Applications in oil & gas exploration sorbent materials, by carbon nanomaterials type and benefits thereof
  • Table 219: Applications in separation, by carbon anomaterials type and benefits thereof
  • Table 220: Carbon nanomaterials in the oil and gas market-applications, stage of commercialization and estimated economic impact
  • Table 221: Application markets, competing materials, NFC advantages and current market size in oil and gas
  • Table 222: Market assessment for nanocellulose in oil and gas
  • Table 223: Nanocellulose in the oil and gas market-applications, stage of commercialization and estimated economic impact
  • Table 224: Market challenges rating for high-impact nanomaterials in the oil and gas exploration market
  • Table 225: Carbon nanotubes product and application developers in the energy industry
  • Table 226: Graphene product and application developers in the energy industry
  • Table 227: Nanocellulose product developers in oil and gas exploration
  • Table 228: Types of filtration
  • Table 229: Applications in desalination and water filtration, by carbon nanomaterials type and benefits thereof
  • Table 230: Applications in gas separation, by nanomaterials type and benefits thereof
  • Table 231: Application markets, competing materials and current market size in filtration
  • Table 232: Graphene and 2D materials in the filtration and separation market-applications, stage of commercialization and estimated economic impact
  • Table 233: Market assessment for nanocellulose in filtration
  • Table 234: Market opportunity assessment for nanocellulose in the filtration industry
  • Table 235: Market challenges rating for nanotechnology and nanomaterials in the filtration and environmental remediation market
  • Table 236: Carbon nanotubes product and application developers in the filtration industry
  • Table 237: Graphene product and application developers in the filtration industry
  • Table 238: Companies developing NFC products in filtration, applications targeted and stage of commercialization
  • Table 239: Applications in lubricants, by carbon nanomaterials type and benefits thereof
  • Table 240: Applications of carbon nanomaterials in lubricants
  • Table 241: Nanotechnology and nanomaterials in lubricants market-applications, stage of commercialization and estimated economic impact
  • Table 242: Market challenges rating for nanotechnology and nanomaterials in the lubricants market
  • Table 243: Carbon nanotubes product and application developers in the lubricants industry
  • Table 244: Graphene product and application developers in the lubricants industry
  • Table 245: Graphene properties relevant to application in sensors
  • Table 246: Applications in strain sensors, by carbon nanomaterials type and benefits thereof
  • Table 247: Applications in strain sensors, by carbon nanomaterials type and benefits thereof
  • Table 248: Applications in biosensors, by nanomaterials type and benefits thereof
  • Table 249: Applications in food sensors, by carbon nanomaterials type and benefits thereof
  • Table 250: Applications in infrared (IR) sensors, by carbon nanomaterials type and benefits thereof
  • Table 251: Applications in optical sensors, by carbon nanomaterials type and benefits thereof
  • Table 252: Applications in pressure sensors, by carbon nanomaterials type and benefits thereof
  • Table 253: Applications in humidity sensors, by carbon nanomaterials type and benefits thereof
  • Table 254: Applications in acoustic sensors, by carbon nanomaterials type and benefits thereof
  • Table 255: Applications in wireless sensors, by carbon nanomaterials type and benefits thereof
  • Table 256: Carbon nanomaterials in the sensors market-applications, stage of commercialization and estimated economic impact
  • Table 257: Market challenges rating for nanotechnology and nanomaterials in the sensors market
  • Table 258: Carbon nanotubes product and application developers in the sensors industry
  • Table 259: Graphene product and application developers in the sensors industry
  • Table 260: Desirable functional properties for the textiles industry afforded by the use of high impact nanomaterials
  • Table 261: Applications in textiles, by carbon nanomaterials type and benefits thereof
  • Table 262: Nanocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications
  • Table 263: Global market for smart clothing and apparel, 2014-2021, units and revenues (US$)
  • Table 264: Market assessment for the nanotechnology in the smart clothing and apparel market
  • Table 265: Carbon nanomaterials in the textiles market-applications, stage of commercialization and estimated economic impact
  • Table 266: Market opportunity assessment for nanocellulose in paper and board
  • Table 267: Potential volume estimates (tons) and penetration of nanocellulose into textiles
  • Table 268: Market assessment for nanocellulose in textiles
  • Table 269: Carbon nanotubes product and application developers in the textiles industry
  • Table 270: Graphene product and application developers in the textiles industry
  • Table 271: Graphene properties relevant to application in 3D printing
  • Table 272: Carbon nanomaterials in the 3D printing market-applications, stage of commercialization and estimated economic impact
  • Table 273: Application markets, competing materials, nanocellulose advantages and current market size in 3D printing
  • Table 274: Market assessment for nanocellulose in 3D printing
  • Table 275: Market opportunity assessment for nanocellulose in 3D printing
  • Table 276: Market challenges rating for nanotechnology and nanomaterials in the textiles and apparel market
  • Table 277: Carbon nanotubes product and application developers in the 3D printing industry
  • Table 278: Graphene product and application developers in the 3D printing industry
  • Table 279: Companies developing nanocellulose 3D printing products,
  • Table 280: Nanocellulose applications timeline in the paper and board markets
  • Table 281: Global packaging market, billions US$
  • Table 282: Market opportunity assessment for nanocellulose in paper and board
  • Table 283: Market challenges rating for nanocellulose in the paper and board market
  • Table 284: Companies developing nanocellulose products in paper and board, applications targeted and stage of commercialization
  • Table 285: Nanocellulose applications timeline in the aerogels market
  • Table 286: Product developers in aerogels
  • Table 287: Nanocellulose applications timeline in the rheology modifiers market
  • Table 288: Commercial activity in nanocellulose rheology modifiers
  • Table 289: CNT producers and companies they supply/licence to
  • Table 290: Graphene producers and types produced
  • Table 291: Graphene industrial collaborations and target markets
  • Table 292: Nanocellulose producers and types of nanocellulose produced
  • Table 293: Target market, by nanocellulose producer

FIGURES

  • Figure 1: Molecular structures of SWNT and MWNT
  • Figure 2: Production capacities for SWNTs in kilograms, 2005-2014
  • Figure 3: Demand for graphene, by market, 2015
  • Figure 4: Demand for graphene, by market, 2015
  • Figure 5: Global government funding for graphene in millions USD
  • Figure 6: Global market for graphene 2010-2025 in tons/year
  • Figure 7: Global consumption of graphene 2015, by region
  • Figure 8: Scale of cellulose materials
  • Figure 9: Cellulose nanofiber transparent sheet
  • Figure 10: CNF transparent sheet
  • Figure 11: Running shoes incorporating cellulose nanofibers
  • Figure 12: Ballpoint pen incorporating cellulose nanofibers
  • Figure 13: CNF wet powder
  • Figure 14: Schematic of single-walled carbon nanotube
  • Figure 15: Double-walled carbon nanotube bundle cross-section micrograph and model
  • Figure 16: Schematic representation of carbon nanohorns
  • Figure 17: TEM image of carbon onion
  • Figure 18: Fullerene schematic
  • Figure 19: Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red
  • Figure 20: Graphene layer structure schematic
  • Figure 21: Graphite and graphene
  • Figure 22: Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene
  • Figure 23: Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1.4)
  • Figure 24: Graphene quantum dots
  • Figure 25: Black phosphorus structure
  • Figure 26: Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N- h2D crystal
  • Figure 27: Schematic of germanene
  • Figure 28: Graphdiyne structure
  • Figure 29: Schematic of Graphane crystal
  • Figure 30: Structure of hexagonal boron nitride
  • Figure 31: Structure of 2D molybdenum disulfide
  • Figure 32: Atomic force microscopy image of a representative MoS2 thin-film transistor
  • Figure 33: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge
  • Figure 34: Schematic of a monolayer of rhenium disulphide
  • Figure 35: Silicene structure
  • Figure 36: Monolayer silicene on a silver (111) substrate
  • Figure 37: Silicene transistor
  • Figure 38: Crystal structure for stanene
  • Figure 39: Atomic structure model for the 2D stanene on Bi2Te3(111)
  • Figure 40: Schematic of tungsten diselenide
  • Figure 41: Schematic diagram of partial molecular structure of cellulose chain with numbering for carbon atoms and n= number of cellobiose repeating unit
  • Figure 42: Scale of cellulose materials
  • Figure 43: Types of nanocellulose
  • Figure 44: Relationship between different kinds of nanocelluloses
  • Figure 45: TEM image of cellulose nanocrystals
  • Figure 46: Graphene can be rolled up into a carbon nanotube, wrapped into a fullerene, and stacked into graphite
  • Figure 47: Schematic representation of methods used for carbon nanotube synthesis (a) Arc discharge (b) Chemical vapor deposition (c) Laser ablation (d) hydrocarbon flames
  • Figure 48: Arc discharge process for CNTs
  • Figure 49: Schematic of thermal-CVD method
  • Figure 50: Schematic of plasma-CVD method
  • Figure 51: CoMoCATR process
  • Figure 52: Schematic for flame synthesis of carbon nanotubes (a) premixed flame (b) counter-flow diffusion flame (c) co-flow diffusion flame (d) inverse diffusion flame
  • Figure 53: Schematic of laser ablation synthesis
  • Figure 54: Graphene synthesis methods
  • Figure 55: TEM micrographs of: A) HR-CNFs; B) GANFR HR-CNF, it can be observed its high graphitic structure; C) Unraveled ribbon from the HR-CNF; D) Detail of the ribbon; E) Scheme of the structure of the HR-CNFs; F) Large single graphene oxide sheets derived from GANF
  • Figure 56: Graphene nanoribbons grown on germanium
  • Figure 57: Methods of synthesizing high-quality graphene
  • Figure 58: Roll-to-roll graphene production process
  • Figure 59: Schematic of roll-to-roll manufacturing process
  • Figure 60: Microwave irradiation of graphite to produce single-layer graphene
  • Figure 61: Main steps involved in the preparation of NCC
  • Figure 62: Schematic of typical commercialization route for graphene producer
  • Figure 63: Schematic of typical commercialization route for nanocellulose producer
  • Figure 64: Volume of industry demand for nanocellulose by nanocellulose producer sales
  • Figure 65: Nanotechnology patent applications, 1991-2015
  • Figure 66: Share of nanotechnology related patent applications since 1972, by country
  • Figure 67: CNT patents filed 2000-2014
  • Figure 68: Patent distribution of CNT application areas to 2014
  • Figure 69: Published patent publications for graphene, 2004-2014
  • Figure 70: Nanocellulose patents by field of application, 2013
  • Figure 71: Technology Readiness Level (TRL) for Carbon Nanotubes
  • Figure 72: Technology Readiness Level (TRL) for graphene
  • Figure 73: Technology Readiness Level (TRL) for nanodiamonds
  • Figure 74: Technology Readiness Level (TRL) for nanocellulose
  • Figure 75: Production volumes of carbon nanotubes (tons), 2010-2025
  • Figure 76: Production capacities for SWNTs in kilograms, 2005-2014
  • Figure 77: Demand for carbon nanotubes, by market
  • Figure 78: Production volumes of Carbon Nanotubes 2015, by region
  • Figure 79: Regional demand for CNTs utilized in batteries
  • Figure 80: Regional demand for CNTs utilized in Polymer reinforcement
  • Figure 81: Global market for graphene 2010-2025 in tons/year
  • Figure 82: Production volumes of nanocellulose 2015, by region
  • Figure 83: Nanomaterials-based automotive components
  • Figure 84: The Tesla S's touchscreen interface
  • Figure 85: Graphene Frontiers?f Six. chemical sensors consists of a field effect transistor (FET) with a graphene channel. Receptor molecules, such as DNA, are attached directly to the graphene channel
  • Figure 86: Graphene-Oxide based chip prototypes for biopsy-free early cancer diagnosis
  • Figure 87: Heat transfer coating developed at MIT
  • Figure 88: Water permeation through a brick without (left) and with (right) ?ggraphene paint?h coating
  • Figure 89: Four layers of graphene oxide coatings on polycarbonate
  • Figure 90: Global Paints and Coatings Market, share by end user market
  • Figure 91: Example process for producing NFC packaging film
  • Figure 92: Graphene-enabled bendable smartphone
  • Figure 93: 3D printed carbon nanotube sensor
  • Figure 94: Graphene electrochromic devices. Top left: Exploded-view illustration of the graphene electrochromic device. The device is formed by attaching two graphene-coated PVC substrates face-to-face and filling the gap with a liquid ionic electrolyte
  • Figure 95: Flexible transistor sheet
  • Figure 96: Foldable graphene E-paper
  • Figure 97: LEDs shining on circuitry imprinted on a 5x5cm sheet of CNF
  • Figure 98: NFC computer chip
  • Figure 99: NFC translucent diffuser schematic
  • Figure 100: Panasonic CTN stretchable Resin Film
  • Figure 101: Nanocellulose photoluminescent paper
  • Figure 102: LEDs shining on circuitry imprinted on a 5x5cm sheet of CNF
  • Figure 103: Wearable gas sensor
  • Figure 104: Flexible, lightweight temperature sensor
  • Figure 105: Smart e-skin system comprising health-monitoring sensors, displays, and ultra flexible PLEDs
  • Figure 106: Graphene medical patch
  • Figure 107: Global touch panel market ($ million), 2011-2018
  • Figure 108: Capacitive touch panel market forecast by layer structure (Ksqm)
  • Figure 109: Global transparent conductive film market forecast (million $)
  • Figure 110: Global transparent conductive film market forecast by materials type, 2015, %
  • Figure 111: Global transparent conductive film market forecast by materials type, 2020, %
  • Figure 112: Global market revenues for smart wearable devices 2014-2021, in US$
  • Figure 113: Global market revenues for nanotech-enabled smart wearable devices 2014-2021 in US$, conservative estimate
  • Figure 114: Global market revenues for nanotech-enabled smart wearable devices 2014-2021 in US$, optimistic estimate
  • Figure 115: Potential addressable market for nanotech-enabled medical smart textiles and wearables
  • Figure 116: Demand for thin film, flexible and printed batteries 2015, by market
  • Figure 117: Demand for thin film, flexible and printed batteries 2025, by market
  • Figure 118: Potential addressable market for nanotech-enabled thin film, flexible or printed batteries
  • Figure 119: Schematic of the wet roll-to-roll graphene transfer from copper foils to polymeric substrates
  • Figure 120: The transmittance of glass/ITO, glass/ITO/four organic layers, and glass/ITO/four organic layers/4-layer graphene
  • Figure 121: Nanotube inks
  • Figure 122: Graphene printed antenna
  • Figure 123: BGT Materials graphene ink product
  • Figure 124: Global market for conductive inks and pastes in printed electronics
  • Figure 125: Transistor architecture trend chart
  • Figure 126: Schematic cross-section of a graphene based transistor (GBT, left) and a graphene field-effect transistor (GFET, right)
  • Figure 127: CMOS Technology Roadmap
  • Figure 128:
  • Figure 38: Thin film transistor incorporating CNTs
  • Figure 129: Graphene IC in wafer tester
  • Figure 130: Schematic cross-section of a graphene based transistor (GBT, left) and a graphene field-effect transistor (GFET, right)
  • Figure 131: Emerging logic devices
  • Figure 132: Stretchable CNT memory and logic devices for wearable electronics
  • Figure 133: Graphene oxide-based RRAm device on a flexible substrate
  • Figure 134: Emerging memory devices
  • Figure 135: Carbon nanotubes NRAM chip
  • Figure 136: Schematic of NRAM cell
  • Figure 137: Layered structure of tantalum oxide, multilayer graphene and platinum used for resistive random access memory (RRAM)
  • Figure 138: A schematic diagram for the mechanism of the resistive switching in metal/GO/Pt
  • Figure 139: Hybrid graphene phototransistors
  • Figure 140: Wearable health monitor incorporating graphene photodetectors
  • Figure 141: Energy densities and specific energy of rechargeable batteries
  • Figure 142: Zapgo supercapacitor phone charger
  • Figure 143: Suntech/TCNT nanotube frame module
  • Figure 144: Nanocellulose sponge developed by EMPA for potential applications in oil recovery
  • Figure 145: Perforene graphene filter
  • Figure 146: Nanocellulose virus filter paper
  • Figure 147: Global market revenues for smart clothing and apparel 2014-2021, in US$
  • Figure 148: Global market revenues for nanotech-enabled smart clothing and apparel 2014-2021, in US$, conservative estimate
  • Figure 149: Global market revenues for nanotech-enabled smart clothing and apparel 2014-2021, in US$, optimistic estimate
  • Figure 150: 3D Printed tweezers incorporating Carbon Nanotube Filament
  • Figure 151: Paper and board global demand
  • Figure 152: Asahi Kasei CNF fabric sheet
  • Figure 153: Properties of Asahi Kasei cellulose nanofiber nonwoven fabric
  • Figure 154: CNF transparent film
  • Figure 155: CNF wet powder
  • Figure 156: Flexible electronic substrate made from CNF
  • Figure 157: Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film
  • Figure 158: CNC produced at Tech Futures?f pilot plant; cloudy suspension (1 wt.%), gel-like (10 wt.%), flake-like crystals, and very fine powder. Product advantages include:
  • Figure 159: NCCTM Process
  • Figure 160: Plantrose process
Back to Top