表紙
市場調査レポート

世界のナノセルロース市場予測

THE GLOBAL MARKET FOR NANOCELLULOSE

発行 Future Markets, Inc. 商品コード 252899
出版日 ページ情報 英文 316 Pages
即納可能
価格
本日の銀行送金レート: 1USD=105.42円で換算しております。
Back to Top
世界のナノセルロース市場予測 THE GLOBAL MARKET FOR NANOCELLULOSE
出版日: 2016年03月22日 ページ情報: 英文 316 Pages
概要

ナノセルロースの市場は成長を維持しており、新製品の市場投入や新たな製造設備の建設などが行われています。持続可能な製品や生物学的製品、低コストで優れた物理的・化学的特性を持った材料などのトレンドが市場成長を促しています。

当レポートでは、ナノセルロースの技術および市場について調査し、ナノセルロースの特徴、メリット、種類、製造法、ナノセルロース市場の構造、関連法規制・規格・標準、エンドユーザー産業・用途別の市場規模、市場動向、市場推進因子などの分析、主な製造業者、製品開発業者、研究センターのプロファイルなどをまとめています。

第1章 エグゼクティブサマリー

第2章 調査手法

第3章 イントロダクション

  • ナノマテリアルの特徴
  • カテゴリー化
  • ナノセルロース
  • タイプ
    • ナノフィブリル化セルロース (NFC:NanoFibrillar Cellulose)
    • ナノ結晶セルロース (NCC:NanoCrystalline Cellulose)
    • バクテリアセルロース (BC:Bacterial Cellulose)
  • 特徴
  • メリット
  • ナノセルロースの製造
  • 製造法

第4章 ナノセルロース市場の構造

第5章 SWOT分析

第6章 法規制・標準・規格

第7章 地域によるイニシアチブ・政府による資金供給

第8章 ナノセルロースの用途

  • 大容量用途
  • 低容量用途
  • 新しい用途

第9章 ナノセルロース市場の分析:エンドユーザー部門別

  • 生産量の推移と予測
  • 世界の製造設備
  • 製造者・設備容量・ナノセルロースのタイプ
  • ナノセルロースの特許・出版物
  • ポリマー複合材料
    • 特性
    • バイオパッケージング
      • 市場成長の推進因子・動向
      • 市場規模
      • 用途
    • 航空宇宙
      • 市場成長の推進因子・動向
      • 市場規模
      • 用途
    • 自動車
      • 市場成長の推進因子・動向
      • 市場規模
      • 用途
    • 建設・建物
      • 市場成長の推進因子・動向
      • 市場規模
      • 用途
    • 商業活動
  • 紙・板紙
    • 特性
    • 市場成長の推進因子・動向
    • 市場規模
    • 用途
      • 紙包装
      • 紙塗装
      • 抗菌剤
    • 商業活動
  • 医療・ヘルスケア
    • 特性
    • 市場成長の推進因子・動向
    • 用途
      • 薬剤送達
      • 医療用インプラント
      • 再生医療
      • 創傷被覆材
      • ラテラルフローイムノアッセイラベル
    • 商業活動
  • 塗料・コーティング剤
    • 特性
    • 市場成長の推進因子・動向
    • 市場規模
    • 用途
      • 塗料・ニス剤
      • 木材塗料
      • 偽造防止フィルム
      • 超疎水性塗料
    • 商業活動
  • エアロゲル
    • 特性
    • 市場成長の推進因子・動向
    • 市場規模
    • 用途
      • 断熱材
      • 医療用途
      • 形状記憶
    • 商業活動
  • 石油
    • 特性
    • 市場成長の推進因子・動向
    • 市場規模
    • 用途
      • 石油・フラッキング掘削流体
      • 抽出
    • 商業活動
  • ろ過
    • 特性
    • 市場成長の推進因子・動向
    • 市場規模
    • 用途
      • 水濾過
      • 気体濾過
      • ウイルス濾過
    • 商業活動
  • レオロジー改質剤
    • 特性
    • 用途
      • 食品
      • 医薬品
      • 化粧品
    • 商業活動
  • プリンタブルエレクトロニクス
    • 特性
    • 市場成長の推進因子・動向
    • 市場規模
      • 用途
      • フレキシブルエネルギー貯蔵
      • 導電性インク
    • 商業活動

第10章 ナノセルロースの製造業者・製品開発業者

第11章 主要なナノセルロース研究センター

図表

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

The “Global Market for Nanocellulose”, fully updated and revised to March 2016, including an additional 50 pages of contents from the previous edition features:

  • Technology description and production methods
  • Market structure, supply chain, patenting and publications
  • Production volumes, total, forecasted and by producer for The Global Nanocellulose Market
  • Markets for nanocellulose, including composites, electronics, construction, paper and pulp, filtration, medicine and life sciences, paints, films, coatings, rheological modifiers, aerogels and oil industry
  • Commercialization timelines, by market
  • Producer, research centre and application developer profiles

Nanocellulose can be produced from a variety of materials (vegetable matter, bamboo etc.) and after applying various pre-treatments, tailor-made nanofibrils with specific morphology and surface chemistry are produced. As well as being completely renewable, safer to handle, and cheaper to produce, nanocellulose materials also possess exceptional physical and chemical properties.

Today there is a substantial amount of research on nanocellulose and commercial development is on-going, including the construction of multi-ton capacity manufacturing facilities, mainly in North American, Japan and Europe. The market for nanocellulose continues to grow with new products on the market in 2015 and new production facilities coming on stream in 2016.

In the light of the Paris Climate Agreement, development of environmentally sustainable new technologies and materials is of growing importance. Nanocellulose is a prime candidate for use as a sustainable material in industries such as packaging that typically involves the high-energy intensity production of chemicals and synthetic polymers.

With appropriate conversion and extraction technologies, as well as modification and characterization, nanocellulose can be integrated into bio-based products such as strength enhancers in paper, polymer composite additives, emulsions and oxygen barrier films for plastics packaging. It will also add new impetus to the traditional paper and board industry and play a role in the future development of printable and flexible electronics.

Table of Contents

1. RESEARCH METHODOLOGY

2. EXECUTIVE SUMMARY

  • 2.1. Applications
  • 2.2. Production
  • 2.3. Market drivers
    • 2.3.1. Sustainable materials
    • 2.3.2. Improved products
    • 2.3.3. Unique properties
    • 2.3.4. Recent improvements in production and product integration
  • 2.4. Market and technical challenges
    • 2.4.1. Characterization
    • 2.4.2. Production
    • 2.4.3. Functionalization
    • 2.4.4. Moisture absorption and aggregation
    • 2.4.5. Scalability
    • 2.4.6. Lack of current products
  • 2.5. Market size

3. INTRODUCTION

  • 3.1. Properties of nanomaterials
  • 3.2. Categorization
  • 3.3. Nanocellulose
  • 3.4. Types of nanocellulose
    • 3.4.1. NanoFibrillar Cellulose (NFC)
      • 3.4.1.1. Production methods for NFC
    • 3.4.2. NanoCrystalline Cellulose (NCC)
    • 3.4.3. Bacterial Cellulose (BCC)
  • 3.5. Synthesis of cellulose materials
  • 3.6. Properties OF nanocellulose
  • 3.7. Advantages of nanocellulose
  • 3.8. Manufacture of nanocellulose
  • 3.9. Production methods
    • 3.9.1. Nanofibrillated cellulose production methods
    • 3.9.2. Nanocrystalline celluose production methods

4. NANOCELLULOSE MARKET STRUCTURE

5. SWOT ANALYSIS FOR NANOCELLULOSE

6. REGULATIONS AND STANDARDS

  • 6.1. Standards
    • 6.1.1. International Standards Organization (ISO)
    • 6.1.2. American National Standards
    • 6.1.3. CSA Group
  • 6.2. Toxicity
  • 6.3. Regulation

7. REGIONAL INITIATIVES AND GOVERNMENT FUNDING

8. NANOCELLULOSE APPLICATIONS

  • 8.1. High volume applications
  • 8.2. Low volume applications
  • 8.3. Novel applications

9. NANOCELLULOSE TECHNOLOGY READINESS LEVEL (TRL)

10. NANOCELLULOSE END USER MARKET SEGMENT ANALYSIS

  • 10.1. Production of nanocellulose
    • 10.1.1. Microfibrillated cellulose
    • 10.1.2. Cellulose nanofiber production
    • 10.1.3. Cellulose nanocrystal production
  • 10.2. Nanocellulose patents & publications
  • 10.3. POLYMER COMPOSITES
    • 10.3.1. Market drivers and trends
      • 10.3.1.1. Improved performance
      • 10.3.1.2. Growth in the wind energy market
      • 10.3.1.3. Environmental impact of carbon fibers
      • 10.3.1.4. Shortcomings of natural fiber composites and glass fiber reinforced composites
    • 10.3.2. Applications and market size
    • 10.3.3. Bio-packaging
      • 10.3.3.1. Market drivers and trends
      • 10.3.3.2. Market size
      • 10.3.3.3. Applications
    • 10.3.4. Aerospace
      • 10.3.4.1. Market drivers and trends
      • 10.3.4.2. Market size
      • 10.3.4.3. Applications
    • 10.3.5. Automotive
      • 10.3.5.1. Market drivers and trends
      • 10.3.5.2. Market size
      • 10.3.5.3. Applications
    • 10.3.6. Construction & building
      • 10.3.6.1. Market drivers and trends
      • 10.3.6.2. Market size
      • 10.3.6.3. Applications
      • 10.3.6.4. Challenges
    • 10.3.7. Commercial activity
  • 10.4. PAPER & BOARD
    • 10.4.1. Market drivers and trends
    • 10.4.2. Market size
    • 10.4.3. Properties and applications
      • 10.4.3.1. Paper packaging
      • 10.4.3.2. Paper coatings
      • 10.4.3.3. Anti-microbials
    • 10.4.4. Commercial activity
  • 10.5. MEDICAL & HEALTHCARE
    • 10.5.1. Market drivers and trends
      • 10.5.1.1. Improved drug delivery for cancer therapy
      • 10.5.1.2. Shortcomings of chemotherapies
      • 10.5.1.3. Biocompatibility of medical implants
      • 10.5.1.4. Anti-biotic resistance
      • 10.5.1.5. Growth in advanced woundcare market
    • 10.5.2. Properties and applications
      • 10.5.2.1. Drug delivery
      • 10.5.2.2. Medical implants
      • 10.5.2.3. Tissue engineering
      • 10.5.2.4. Wound dressings
      • 10.5.2.5. Laterial flow immunosay labels
    • 10.5.3. Market size and opportunity
    • 10.5.4. Commercial activity
  • 10.6. COATINGS, FILMS & PAINTS
    • 10.6.1. Market drivers and trends
      • 10.6.1.1. Sustainable coating systems and materials
      • 10.6.1.2. Chemical to bio-based
      • 10.6.1.3. Increased demand for abrasion and scratch resistant coatings
      • 10.6.1.4. Increased demand for UV-resistant coatings
      • 10.6.1.5. Growth in superhydrophobic coatings market
    • 10.6.2. Market size
    • 10.6.3. Properties and applications
      • 10.6.3.1. Abrasion and scratch resistance
      • 10.6.3.2. Wood coatings
      • 10.6.3.3. Anti-counterfeiting films
      • 10.6.3.4. Superhydrophobic coatings
      • 10.6.3.5. Gas barriers
    • 10.6.4. Commercial activity
  • 10.7. AEROGELS
    • 10.7.1. Market drivers and trends
      • 10.7.1.1. Energy efficiency
      • 10.7.1.2. Demand for environmentally-friendly, lightweight materials
    • 10.7.2. Market size
    • 10.7.3. Properties and applications
      • 10.7.3.1. Thermal insulation
      • 10.7.3.2. Medical
      • 10.7.3.3. Shape memory
    • 10.7.4. Commercial activity
  • 10.8. OIL AND GAS EXPLORATION
    • 10.8.1. Market drivers and trends
      • 10.8.1.1. Cost
      • 10.8.1.2. Increased demands of drilling environments
      • 10.8.1.3. Environmental and regulatory
    • 10.8.2. Market size
    • 10.8.3. Properties and applications
      • 10.8.3.1. Oil and fracking drilling fluids
      • 10.8.3.2. Extraction
    • 10.8.4. Commercial activity
  • 10.9. FILTRATION
    • 10.9.1. Market drivers and trends
      • 10.9.1.1. Need for improved membrane technology
      • 10.9.1.2. Water shortage and population growth
      • 10.9.1.3. Contamination
      • 10.9.1.4. Recyclability of polymer membranes
    • 10.9.2. Properties and applications
      • 10.9.2.1. Water filtration
      • 10.9.2.2. Air filtration
      • 10.9.2.3. Virus filtration
    • 10.9.3. Market size
    • 10.9.4. Commercial activity
  • 10.10. RHEOLOGY MODIFIERS
    • 10.10.1. Properties and applications
      • 10.10.1.1. Food
      • 10.10.1.2. Pharmaceuticals
      • 10.10.1.3. Cosmetics
    • 10.10.2. Commercial activity
  • 10.11. FLEXIBLE ELECTRONICS
    • 10.11.1. Market drivers and trends
      • 10.11.1.1. Environmental
      • 10.11.1.2. Flexible, wearable and paper electronics markets growing
      • 10.11.1.3. Need for improved barrier function
    • 10.11.2. Properties and applications
      • 10.11.2.1. Flexible energy storage
      • 10.11.2.2. Conductive inks
    • 10.11.3. Market size and opportunity
    • 10.11.4. Commercial activity
  • 10.12. 3D PRINTING
    • 10.12.1. Market drivers
      • 10.12.1.1. Improved materials at lower cost
    • 10.12.2. Applications and market size
    • 10.12.3. Commercial activity

11. NANOCELLULOSE COMPANY PROFILES

12. MAIN NANOCELLULOSE RESEARCH CENTRES

  • 12.1. Aalto University
  • 12.2. AIST
  • 12.3. Clark-Atlanta University
  • 12.4. Colorado School of Mines
  • 12.5. EMPA
  • 12.6. Georgia Institute of Technology
  • 12.7. Grenoble INP-Pagora
  • 12.8. ICAR-Central Institute for Research on Cotton Technology
  • 12.9. McMaster University
  • 12.10. North Carolina State University
  • 12.11. Oregon State University
  • 12.12. Paper and Fiber Research Institute (PFI)
  • 12.13. Pennsylvania State University
  • 12.14. Purdue University
  • 12.15. SUNY-ESF
  • 12.16. Technical University of Lodz
  • 12.17. University of Exeter
  • 12.18. University of Fribourg
  • 12.19. Uppsala University
  • 12.20. Universidade do Minho
  • 12.21. University of Natural Resources and Life Sciences (Boku University)
  • 12.22. University of Toronto
  • 12.23. Other research centres/groups

TABLES

  • Table 1: Nanocellulose production plants worldwide and production status
  • Table 2: Potential volume estimates (tons) and penetration of nanocellulose into key markets
  • Table 3: Market summary for nanocellulose-Selling grade particle diameter, usage, advantages, average price/ton, market estimates, global consumption, main current applications, future applications
  • Table 4: Categorization of nanomaterials
  • Table 5: Nanocellulose properties
  • Table 6: Applications of nanofibrillar cellulose (NFC)
  • Table 7: Production methods of NFC producers
  • Table 8: Applications of nanocrystalline cellulose (NCC)
  • Table 9: Production capacities of CNC producers per annum in tons, current and planned
  • Table 10: Applications of bacterial cellulose (BC)
  • Table 11: Types of nanocellulose-Preparation methods, resulting materials and applications
  • Table 12: Properties and applications of nanocellulose
  • Table 13: Properties of cellulose nanofibrils relative to metallic and polymeric materials
  • Table 14: Nanocellulose nanocrystal sources and scale
  • Table 15: Nanofibrillated cellulose production methods
  • Table 16: Cellulose nanocrystals (NCC) production methods
  • Table 17: Nanocellulose market structure
  • Table 18: SWOT analysis of nanocellulose
  • Table 19: Safety of Micro/Nanofibrillated cellulose
  • Table 20: Production capacities of CNF producers per annum in tons, current and planned
  • Table 21: Production capacities of CNC producers per annum in tons, current and planned
  • Table 22: Published patent publications for nanocellulose, 1997-2013
  • Table 23: Nanocellulose patents as of May 2015
  • Table 24: Research publications on nanocellulose materials and composites, 1996-2013
  • Table 25: Nanocellulose patents by organisation
  • Table 26: Nanocellulose patents by organisation, 2014
  • Table 27: Main patent assignees for NCC, as of May 2015
  • Table 28: Main patent assignees for NFC, as of May 2015
  • Table 29: Main patent assignees for BCC, as of May 2015
  • Table 30: Nanocellulose applications timeline in the polymer composites market
  • Table 31: Applications of nanocellulose in polymer composites by cellulose type
  • Table 32: Limitations of nanocellulose in the development of polymer nanocomposites
  • Table 33: Comparative properties of polymer composites reinforcing materials
  • Table 34: Comparative properties of polymer composites reinforcing materials
  • Table 35: Nanocellulose in the polymer composites market-applications, stage of commercialization and addressable market size
  • Table 36: Equivalent cost of nanocellulose and competitive materials in polymer composites
  • Table 37: Application markets, competing materials, nanocellulose advantages and current market size in polymer composites
  • Table 38: Examples of antimicrobial immobilization into cellulose nanofibers
  • Table 39: Application markets, competing materials, NFC advantages and current market size in packaging
  • Table 38: Oxygen permeability of nanocellulose films compared to those made form commercially available petroleum based materials and other polymers
  • Table 39: Applications of natural fiber composites in vehicles by manufacturers
  • Table 40: Application markets, competing materials, Nanocellulose advantages and current market size in the automotive sector
  • Table 41: Commercial activity in nanocellulose polymer composites-Companies and products
  • Table 42: Nanocellulose applications timeline in the paper and board markets
  • Table 43: Global packaging market, billions US$
  • Table 44: Commercial activity in nanocellulose paper and board
  • Table 45: Nanocellulose applications timeline in the medical and healthcare markets
  • Table 46: Commercial activity in nanocellulose medical and healthcare applications
  • Table 47: Nanocellulose applications timeline in the coatings and paints markets
  • Table 50: Application markets, competing materials, nanocellulose advantages and current market size in coatings and films
  • Table 48: Commercial activity in nanocellulose coatings and paints applications
  • Table 49: Nanocellulose applications timeline in the aerogels market
  • Table 50: Commercial activity in nanocellulose aerogels
  • Table 51: Nanocellulose applications timeline in the oil market
  • Table 55: Application markets, competing materials, NFC advantages and current market size in oil and gas
  • Table 52: Commercial activity in nanocellulose oil and gas exploration
  • Table 53: Nanocellulose applications timeline in the filtration market
  • Table 54: Types of filtration
  • Table 55: CNF membranes
  • Table 56: Application markets, competing materials, nanocellulose advantages and current market size in filtration
  • Table 57: Commercial activity in nanocellulose filtration
  • Table 56: Nanocellulose applications timeline in the rheology modifiers market
  • Table 57: Commercial activity in nanocellulose rheology modifiers
  • Table 58: Nanocellulose applications timeline in flexible electronics
  • Table 59: Application markets, competing materials, Nanocellulose advantages and current market size in electronics
  • Table 60: Opportunities for nanomaterials in printed electronics
  • Table 61: Commercial activity in nanocellulose flexible electronics
  • Table 67: Application markets, competing materials, nanocellulose advantages and current market size in 3D printing
  • Table 69: Companies developing nanocellulose 3D printing products,
  • Table 62: Nanocellulose producers and types of nanocellulose produced
  • Table 63: Target market, by company

FIGURES

  • Figure 1: Scale of cellulose materials
  • Figure 1: CNF transparent sheet
  • Figure 2: CNF wet powder
  • Figure 3: Hierarchical Structure of Wood Biomass
  • Figure 4: Types of nanocellulose
  • Figure 5: Schematic of NFC production
  • Figure 6: TEM image of cellulose nanocrystals
  • Figure 7: Main steps involved in the preparation of NCC
  • Figure 8: Schematic of typical commercialization route for nanocellulose producer
  • Figure 9: Nanocellulose Technology Readiness Level (TRL)
  • Figure 10: Nanocellulose patents by field of application, 2013
  • Figure 12: Example process for producing NFC packaging film
  • Figure 11: Paper and board global demand
  • Figure 12: Global Paints and Coatings Market, share by end user market
  • Figure 13: Nanocellulose sponge developed by EMPA for potential applications in oil recovery
  • Figure 14: Nanocellulose virus filter paper
  • Figure 15: NFC computer chip
  • Figure 16: NFC translucent diffuser schematic
  • Figure 17: Nanocellulose photoluminescent paper
  • Figure 18: LEDs shining on circuitry imprinted on a 5x5cm sheet of CNF
  • Figure 20: LEDs shining on circuitry imprinted on a 5x5cm sheet of CNF
Back to Top