市場調査レポート
商品コード
1058136

フレキシブル・プリント・薄膜電池の世界市場 (2022年~2032年)

The Global Market for Flexible, Printed, and Thin Film Batteries 2022-2032

出版日: | 発行: Future Markets, Inc. | ページ情報: 英文 305 Pages, 129 Figures, 35 Tables | 納期: 即納可能 即納可能とは

価格
価格表記: GBPを日本円(税抜)に換算
本日の銀行送金レート: 1GBP=195.22円
フレキシブル・プリント・薄膜電池の世界市場 (2022年~2032年)
出版日: 2022年03月22日
発行: Future Markets, Inc.
ページ情報: 英文 305 Pages, 129 Figures, 35 Tables
納期: 即納可能 即納可能とは
  • 全表示
  • 概要
  • 図表
  • 目次
概要

近年、最先端の電池の需要が大きく伸びると共に、フレキシブル・プリント・固体薄膜電池の市場も今後10年間に、IoT・ウェアラブル技術・フレキシブル電子機器・センサー・電気自動車の用途向けに爆発的に成長すると予想されています。

フレキシブルでウェアラブルな電子機器への要求が高まる中、機械的に柔軟で折り畳むことができ、伸縮も可能なエネルギー貯蔵デバイスの開発が必要となっています。一方、これらの新しいエネルギー貯蔵デバイスは、軽量性や高エネルギー密度、高レート能力、長いサイクル寿命などの高い電気化学的性能を持つ必要があります。

当レポートでは、世界のフレキシブル・プリント・薄膜電池の市場について分析し、市場の基本構造や最新情勢、昨今の技術開発・普及の動きと今後の見通し、セグメント別の市場動向とその予測 (2020年~2032年)、主要企業のプロファイル、といった情報を取りまとめてお届けいたします。

目次

第1章 調査範囲・手法

第2章 エグゼクティブサマリー

  • 現在の電池市場
  • 市場促進要因
  • 電子機器用の柔軟性・伸縮性のある電池
  • 柔軟性・伸縮性のあるスーパーキャパシタ
  • 電池市場のメガトレンド
  • 柔軟性・伸縮性のある電池の世界市場
    • 世界市場:種類別・市場別 (金額ベース、2032年まで)
  • 市場の課題
  • 業界の動向 (2020年~2022年)

第3章 固体薄膜電池

  • イントロダクション
  • 固体薄膜電池の欠点と市場の課題

第4章 フレキシブル電池 (伸縮式・回転式・折り曲げ式、折りたたみ式を含む)

  • 技術仕様
    • 柔軟性へのアプローチ
  • フレキシブルエレクトロニクス
    • 柔軟な素材
  • フレキシブル・ウェアラブル金属硫黄電池
  • フレキシブル・ウェアラブル金属空気電池
  • フレキシブル・リチウムイオン電池
    • 電極の設計
    • 繊維状のリチウムイオン電池
    • 伸縮式リチウムイオン電池
    • 折り紙式・切り紙式のリチウムイオン電池
  • フレキシブル・リチウム硫黄電池
    • コンポーネント
    • カーボンナノマテリアル
  • フレキシブルLi-MnO2 (リチウムマンガン二酸化物) 電池
  • フレキシブル亜鉛ベース電池
    • コンポーネント
    • 課題
    • フレキシブルAn-Mn (二酸化マンガン-マンガン) 電池
    • フレキシブル銀亜鉛 (Ag-Zn) 電池
    • フレキシブル空気亜鉛電池
    • フレキシブル亜鉛-バナジウム電池
  • 繊維状電池
    • カーボンナノチューブ
    • 種類
    • 用途
    • 課題
  • 透明電池
    • コンポーネント
  • 分解性電池
    • コンポーネント
  • 柔軟性・伸縮性のあるスーパーキャパシタ
    • 電極用ナノ材料
  • ウェアラブルエネルギー貯蔵装置と組み合わせた環境発電

第5章 プリント電池

  • 技術仕様
    • コンポーネント
    • 主な機能
    • 材料
    • 印刷技術
    • 活用領域
  • リチウムイオン (LiB) プリント電池
  • 亜鉛ベースのプリント電池
  • 3Dプリント電池
    • 電池製造のための3D印刷技術
    • 3Dプリント電池の材料
  • プリントスーパーキャパシタ
    • 電極材料
    • 電解質

第6章 フレキシブル・プリント・薄膜電池の市場

  • モノのインターネット (IoT)
  • 健康・ウェルネス用モニタリングデバイス
  • 医療用埋め込み型
  • 皮膚パッチ
    • 低侵襲・非侵襲の血糖モニタリング製品
    • 心臓血管モニタリング
    • 温度モニタリング
  • スマートカード
  • RFIDタグ
    • 低周波 (LF) RFIDタグ:30~300 KHz
    • 高周波 (HF) RFIDタグ:3~30 MHz
    • 極超短波 (UHF) RFIDタグ:300 MHz ~3 GHz
    • アクティブ/パッシブ/セミパッシブRFIDタグ
  • ウェアラブル
    • ウェアラブルセンサーの電源
    • 手首に装着したウェアラブル
    • スマートウォッチ
    • スポーツ・フィットネストラッカー
    • 足に装着したウェアラブル
  • eテキスタイル
    • テキスタイルベースのバッテリー
    • 環境発電
    • eテキスタイルへの電力供給
    • eテキスタイル用電池の主な種類:長所と短所
    • バイオバッテリー
    • スマートテキスタイルにおける電池統合の課題
  • 自動車、輸送
  • マイクロ/ナノ電気機械システム (MEMS/NEMS)
  • スマートパッケージング
  • 折りたたみ式のスマートフォンとディスプレイ

第7章 企業プロファイル (全121社分)

第8章 参考文献

図表

List of Tables

  • Table 1. Market drivers for use of advanced technologies in batteries
  • Table 2. Battery market megatrends
  • Table 3. Market challenges for flexible, printed and thin film batteries
  • Table 4. Flexible, printed and thin film batteries industry developments 2020-2022
  • Table 5. Market segmentation and status for solid-state batteries
  • Table 6. Shortcoming of solid-state thin film batteries
  • Table 8. Flexible battery applications and technical requirements
  • Table 9. Flexible Li-ion battery prototypes
  • Table 10. Electrode designs in flexible lithium-ion batteries
  • Table 11. Summary of fiber-shaped lithium-ion batteries
  • Table 12. Types of fiber-shaped batteries
  • Table 13. Components of transparent batteries
  • Table 14. Components of degradable batteries
  • Table 15. Applications of nanomaterials in flexible and stretchable supercapacitors, by advanced materials type and benefits thereof
  • Table 17. Main components and properties of different printed battery types
  • Table 18.2D and 3D printing techniques
  • Table 19. Printing techniques applied to printed batteries
  • Table 20. Main components and corresponding electrochemical values of lithium-ion printed batteries
  • Table 21. Printing technique, main components and corresponding electrochemical values of printed batteries based on Zn-MnO2 and other battery types
  • Table 22. Main 3D Printing techniques for battery manufacturing
  • Table 23. Electrode Materials for 3D Printed Batteries
  • Table 24. Methods for printing supercapacitors
  • Table 25. Electrode Materials for printed supercapacitors
  • Table 26. Electrolytes for printed supercapacitors
  • Table 27. Main properties and components of printed supercapacitors
  • Table 29. Devices for IoT power sources
  • Table 30. Examples of wearable medical device products
  • Table 31. Wearable bio-signal monitoring devices
  • Table 32. Minimally-invasive and non-invasive glucose monitoring products
  • Table 33. Types of RFID tags
  • Table 39. Market requirements for energy storage in wearables
  • Table 34. Flexible batteries types in wearable sensors
  • Table 35. Wearable health monitors
  • Table 36. Main smart watch producers and products
  • Table 37. Wearable sensor products for monitoring sport performance
  • Table 38. Companies and products in smart footwear
  • Table 40. Advantages and disadvantages of batteries for E-textiles
  • Table 41. Comparison of prototype batteries (flexible, textile, and other) in terms of area-specific performance
  • Table 43. Foldable smartphones, laptops and tablets, on or near market
  • Table 44. 3DOM separator
  • Table 45. Battery performance test specifications of J. Flex batteries

List of Figures

  • Figure 1. Annual sales of battery electric vehicles and plug-in hybrid electric vehicles
  • Figure 2. Global battery market 2015-2032, billions USD
  • Figure 3. Flexible batteries on the market
  • Figure 4. Examples of flexible electronics devices
  • Figure 5. Stretchable graphene supercapacitor
  • Figure 6. Costs of batteries to 2030
  • Figure 7. Revenues for thin film, flexible and printed batteries 2021-2032, by market, millions USD (excluding thin film solid-state batteries)
  • Figure 8. The global market for solid-state batteries, 2018-2032, millions USD
  • Figure 9. ULTRALIFE thin film battery
  • Figure 10. Examples of applications of thin film batteries
  • Figure 11. Capacities and voltage windows of various cathode and anode materials
  • Figure 12. Traditional lithium-ion battery (left), solid state battery (right)
  • Figure 13. Bulk type compared to thin film type SSB
  • Figure 14. Ragone plots of diverse batteries and the commonly used electronics powered by flexible batteries
  • Figure 15. Flexible, rechargeable battery
  • Figure 16. Various architectures for flexible and stretchable electrochemical energy storage
  • Figure 17. Types of flexible batteries
  • Figure 18. Flexible label and printed paper battery
  • Figure 19. Materials and design structures in flexible lithium ion batteries
  • Figure 20. Flexible/stretchable LIBs with different structures
  • Figure 21. Schematic of the structure of stretchable LIBs
  • Figure 22. Electrochemical performance of materials in flexible LIBs
  • Figure 23. a-c) Schematic illustration of coaxial (a), twisted (b), and stretchable (c) LIBs
  • Figure 24. a) Schematic illustration of the fabrication of the superstretchy LIB based on an MWCNT/LMO composite fiber and an MWCNT/LTO composite fiber. b,c) Photograph (b) and the schematic illustration (c) of a stretchable fiber-shaped battery under stretching conditions. d) Schematic illustration of the spring-like stretchable LIB. e) SEM images of a fiberat different strains. f) Evolution of specific capacitance with strain. d-f)
  • Figure 25. Origami disposable battery
  • Figure 26. Zn-MnO2 batteries produced by Brightvolt
  • Figure 27. Charge storage mechanism of alkaline Zn-based batteries and zinc-ion batteries
  • Figure 28. Zn-MnO2 batteries produced by Blue Spark
  • Figure 29. Ag-Zn batteries produced by Imprint Energy
  • Figure 30. Transparent batteries
  • Figure 31. Degradable batteries
  • Figure 32. Schematic of supercapacitors in wearables
  • Figure 33. (A) Schematic overview of a flexible supercapacitor as compared to conventional supercapacitor
  • Figure 34. Stretchable graphene supercapacitor
  • Figure 35. Wearable self-powered devices
  • Figure 36. Various applications of printed paper batteries
  • Figure 37.Schematic representation of the main components of a battery
  • Figure 38. Schematic of a printed battery in a sandwich cell architecture, where the anode and cathode of the battery are stacked together
  • Figure 39. Manufacturing Processes for Conventional Batteries (I), 3D Microbatteries (II), and 3D-Printed Batteries (III)
  • Figure 40. Main printing methods for supercapacitors
  • Figure 41. Capacitech Energy cable-based capacitor
  • Figure 42. Cable-Based Capacitor integrated with wiring of an indoor solar cell
  • Figure 43. Companies and products in wearable health monitoring and rehabilitation devices and products
  • Figure 44. Flexible, implantable battery concept
  • Figure 45. Schematic of non-invasive CGM sensor
  • Figure 46. Adhesive wearable CGM sensor
  • Figure 47. VitalPatch
  • Figure 48. Wearable ECG-textile
  • Figure 49. Wearable ECG recorder
  • Figure 50. Nexkin™
  • Figure 51. Enfucell wearable temperature tag
  • Figure 52. TempTraQ wearable wireless thermometer
  • Figure 53. Smart card incorporating an ultra-thin battery
  • Figure 54. RFID ultra micro battery
  • Figure 55. Applications of wearable flexible sensors worn on various body parts
  • Figure 56. Stretchable transistor
  • Figure 57. Artificial skin prototype for gesture recognition
  • Figure 58. Connected human body and product examples
  • Figure 59. Schematic flow chart of self-powering smart wearable sensors
  • Figure 60. Digitsole Smartshoe
  • Figure 62. E-textile flexible, printed and thin film battery applications
  • Figure 63. Power supply mechanisms for electronic textiles and wearables
  • Figure 64. Toyota sports EV concept incorporating solid-state batteries
  • Figure 65. Samsung foldable battery patent schematic
  • Figure 66. LG Chem foldable display
  • Figure 67. Asus Foldable Phone
  • Figure 68. Dell Concept Ori
  • Figure 69. Intel Foldable phone
  • Figure 70. ThinkPad X1 Fold
  • Figure 71. Motorola Razr
  • Figure 72. Oppo Find N folding phone
  • Figure 73. Royole FlexPai 2
  • Figure 74. Galaxy Fold 3
  • Figure 75. Samsung Galaxy Z Flip 3
  • Figure 76. TCL Tri-Fold Foldable Phone
  • Figure 77. TCL rollable phone
  • Figure 78. Xiaomi Mi MIX Flex
  • Figure 79. 24M battery
  • Figure 80. 3DOM battery
  • Figure 81. AC biode prototype
  • Figure 82. Ampcera's all-ceramic dense solid-state electrolyte separator sheets (25 um thickness, 50mm x 100mm size, flexible and defect free, room temperature ionic conductivity ~1 mA/cm)
  • Figure 83. Amprius battery products
  • Figure 84. All-polymer battery schematic
  • Figure 85. All Polymer Battery Module
  • Figure 86. Resin current collector
  • Figure 87. Ateios thin-film, printed battery
  • Figure 88. 3D printed lithium-ion battery
  • Figure 89. Blue Solution module
  • Figure 90. TempTraq wearable patch
  • Figure 91. Cymbet EnerChip™
  • Figure 92. E-magy nano sponge structure
  • Figure 93. SoftBattery®
  • Figure 94. Roll-to-roll equipment working with ultrathin steel substrate
  • Figure 95. TAeTTOOz printable battery materials
  • Figure 96. 40 Ah battery cell
  • Figure 97. FDK Corp battery
  • Figure 98. 2D paper batteries
  • Figure 99. 3D Custom Format paper batteries
  • Figure 100. Fuji carbon nanotube products
  • Figure 101. Gelion Endure battery
  • Figure 102. Portable desalination plant
  • Figure 103. Grepow flexible battery
  • Figure 104. Hitachi Zosen solid-state battery
  • Figure 105. Ilika solid-state batteries
  • Figure 106. ZincPoly™ technology
  • Figure 107. Ionic Materials battery cell
  • Figure 108. Schematic of Ion Storage Systems solid-state battery structure
  • Figure 109. ITEN micro batteries
  • Figure 110. LiBEST flexible battery
  • Figure 111. 3D solid-state thin-film battery technology
  • Figure 112. Lyten batteries
  • Figure 113. Nanotech Energy battery
  • Figure 114. Hybrid battery powered electrical motorbike concept
  • Figure 115. NBD battery
  • Figure 116. Schematic illustration of three-chamber system for SWCNH production
  • Figure 117. TEM images of carbon nanobrush
  • Figure 118. EnerCerachip
  • Figure 119. Cambrian battery
  • Figure 120. Printed battery
  • Figure 121. Prieto Foam-Based 3D Battery
  • Figure 122. Printed Energy flexible battery
  • Figure 123. ProLogium solid-state battery
  • Figure 124. QingTao solid-state batteries
  • Figure 125. Sakuú Corporation 3Ah Lithium Metal Solid-state Battery
  • Figure 126. SES Apollo batteries
  • Figure 127. Sionic Energy battery cell
  • Figure 128. Solid Power battery pouch cell
  • Figure 129.TeraWatt Technology solid-state battery
目次

Demand for advanced batteries has increased greatly in recent years and the market for Flexible, Printed, and Solid-State Thin Film batteries will explode in the next decade in Internet of Things (IoT), wearables, flexible electronics, sensors and electric vehicle applications.

Given the increasing demands for flexible and wearable electronics, it is necessary to develop corresponding energy storage devices that are mechanically flexible, foldable and even stretchable. These emerging energy storage devices also need to be lightweight and have high electrochemical performance with a high energy density, high rate capability, and long cycling life.

Mass manufacturing of solid-state batteries, while in its infancy, will have a huge impact on the market for electric vehicles, allowing for enhanced safety, range and performance. As well as requiring characteristics such as low cost and high energy density and power density, battery requirements for new technologies include:

  • small footprint (conventional batteries take up to 40% of the space of wearables and mobile phones)
  • flexibility
  • various form factors
  • shape conformability
  • easy integration with devices.

“The Global Market for Flexible, Printed, and Thin Film Batteries 2022” covers all the latest developments, key player activities, end user market applications and current and future trends.

Report content includes:

  • State of market and technology developments for Flexible, Printed, and Solid-State Thin Film batteries, applications, future trends & opportunities and global players products and activities.
  • Technologies covered include printed batteries, solid-state batteries, thin-film lithium batteries, 2D and 3D Micro-batteries, carbon-zinc batteries, stretchable batteries, rollable batteries, Fiber-shaped lithium-ion batteries, foldable batteries, cable-shaped batteries, thin flexible supercapacitors, transparent batteries.
  • Global revenues by battery types and markets 2020-2032
  • Markets covered include wearables, electronic textiles, medical devices, diagnostics, implantables and skin patches, cosmetic, portable electronics, internet of things wireless sensor and connected device, radio-frequency identification (RFID) tags, smart cards, and smart labels for food packaging, supply-chain logistics etc.
  • 121 in depth company profiles. Companies profiled include Addionics, Ateios Systems, Blackstone Resources AG, Blue Solutions, Blue Spark Technologies, Inc., Britishvolt, Factorial Energy, Ilika, ProLogium, QuantumScape, Sakuu, Solid Power, and Sparkz.

TABLE OF CONTENTS

1 RESEARCH SCOPE AND METHODOLOGY

  • 1.1 Report scope
  • 1.2 Market coverage
  • 1.3 Research methodology
  • 1.4 Primary research
  • 1.5 Secondary research

2 EXECUTIVE SUMMARY

  • 2.1 Current market for batteries
  • 2.2 Market drivers
  • 2.3 Flexible and stretchable batteries for electronics
  • 2.4 Flexible and stretchable supercapacitors
  • 2.5 Battery market megatrends
  • 2.6 The global market for thin film, printed, flexible & stretchable, batteries
    • 2.6.1 Global market to 2032, by types and markets (revenues)
      • 2.6.1.1 Solid-state batteries segment
  • 2.7 Market challenges
  • 2.8 Industry developments 2020-2022

3 SOLID-STATE THIN FILM BATTERIES

  • 3.1 Introduction
    • 3.1.1 Features and advantages
    • 3.1.2 Technical specifications
    • 3.1.3 Types
    • 3.1.4 Microbatteries
      • 3.1.4.1 Introduction
      • 3.1.4.2 Materials
      • 3.1.4.3 Applications
      • 3.1.4.4 3D designs
    • 3.1.5 Bulk type solid-state batteries
  • 3.2 Shortcomings and market challenges for solid-state thin film batteries

4 FLEXIBLE BATTERIES (including stretchable, rollable, bendable and foldable)

  • 4.1 Technical specifications
    • 4.1.1 Approaches to flexibility
  • 4.2 Flexible electronics
    • 4.2.1 Flexible materials
  • 4.3 Flexible and wearable Metal-sulfur batteries
  • 4.4 Flexible and wearable Metal-air batteries
  • 4.5 Flexible Lithium-ion Batteries
    • 4.5.1 Electrode designs
    • 4.5.2 Fiber-shaped Lithium-Ion batteries
    • 4.5.3 Stretchable lithium-ion batteries
    • 4.5.4 Origami and kirigami lithium-ion batteries
  • 4.6 Flexible Li/S batteries
    • 4.6.1 Components
    • 4.6.2 Carbon nanomaterials
  • 4.7 Flexible lithium-manganese dioxide (Li-MnO2) batteries
  • 4.8 Flexible zinc-based batteries
    • 4.8.1 Components
      • 4.8.1.1 Anodes
      • 4.8.1.2 Cathodes
    • 4.8.2 Challenges
    • 4.8.3 Flexible zinc-manganese dioxide (Zn-Mn) batteries
    • 4.8.4 Flexible silver-zinc (Ag-Zn) batteries
    • 4.8.5 Flexible Zn-Air batteries
    • 4.8.6 Flexible zinc-vanadium batteries
  • 4.9 Fiber-shaped batteries
    • 4.9.1 Carbon nanotubes
    • 4.9.2 Types
    • 4.9.3 Applications
    • 4.9.4 Challenges
  • 4.10 Transparent batteries
    • 4.10.1 Components
  • 4.11 Degradable batteries
    • 4.11.1 Components
  • 4.12 Flexible and stretchable supercapacitors
    • 4.12.1 Nanomaterials for electrodes
  • 4.13 Energy harvesting combined with wearable energy storage devices

5 PRINTED BATTERIES

  • 5.1 Technical specifications
    • 5.1.1 Components
      • 5.1.1.1 Design
    • 5.1.2 Key features
    • 5.1.3 Materials
    • 5.1.4 Printing techniques
    • 5.1.5 Applications
  • 5.2 Lithium-ion (LIB) printed batteries
  • 5.3 Zinc-based printed batteries
  • 5.4 3D Printed batteries
    • 5.4.1 3D Printing techniques for battery manufacturing
    • 5.4.2 Materials for 3D printed batteries
      • 5.4.2.1 Electrode materials
      • 5.4.2.2 Electrolyte Materials
  • 5.5 Printed supercapacitors
    • 5.5.1 Electrode materials
    • 5.5.2 Electrolytes

6 MARKETS FOR FLEXIBLE, PRINTED AND THIN FILM BATTERIES

  • 6.1 Internet of Things (IoT)
  • 6.2 Health and wellness monitoring devices
  • 6.3 Medical implantables
  • 6.4 Skin patches
    • 6.4.1 Minimally-invasive and non-invasive glucose monitoring products
    • 6.4.2 Cardiovascular monitoring
    • 6.4.3 Temperature monitoring
  • 6.5 Smart Cards
  • 6.6 RFID tags
    • 6.6.1 Low-frequency (LF) RFID tags: 30 KHz to 300 KHz
    • 6.6.2 High-frequency (HF) RFID tags: 3 to 30 MHz
    • 6.6.3 Ultra-high-frequency (UHF) RFID tags: 300 MHz to 3GHz
    • 6.6.4 Active, passive and semi-passive RFID tags
  • 6.7 Wearables
    • 6.7.1 Energy sources for wearable sensors
    • 6.7.2 Wrist-worn wearables
    • 6.7.3 Smart watches
      • 6.7.3.1 Health monitoring
      • 6.7.3.2 Energy harvesting for powering smartwatches
      • 6.7.3.3 Main smart watch producers and products
    • 6.7.4 Sports and fitness trackers
      • 6.7.4.1 Built in function in smart watches and fitness trackers
    • 6.7.5 Foot-worn wearables
      • 6.7.5.1 Companies and products
  • 6.8 E-textiles
    • 6.8.1 Textile-based batteries
    • 6.8.2 Energy harvesting
    • 6.8.3 Powering E-textiles
    • 6.8.4 Advantages and disadvantages of main battery types for E-textiles
    • 6.8.5 Bio-batteries
    • 6.8.6 Challenges for battery integration in smart textiles
  • 6.9 Automotive, Transport
  • 6.10 Micro/Nano Electromechanical Systems (MEMS/NEMS)
  • 6.11 Smart packaging
  • 6.12 Foldable smartphones and displays

7 COMPANY PROFILES (121 company profiles)

8 REFERENCES