株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

エネルギー貯蔵コスト・性能:蓄電技術のライフサイクル費用の分析

Energy Storage Cost and Performance Report: Analysis of Life-Cycle Costs of Energy Storage Technologies

発行 Energy Storage Update 商品コード 340671
出版日 ページ情報 英文 70 Pages; 29 Figures; 9 Tables
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=114.71円で換算しております。
Back to Top
エネルギー貯蔵コスト・性能:蓄電技術のライフサイクル費用の分析 Energy Storage Cost and Performance Report: Analysis of Life-Cycle Costs of Energy Storage Technologies
出版日: 2015年07月01日 ページ情報: 英文 70 Pages; 29 Figures; 9 Tables
概要

近年、再生可能エネルギーを電力網に接続させて、その商業利用を進める動きが顕著になってきましたが、再生可能エネルギーの間欠性を補うために、エネルギー貯蔵技術のニーズも急拡大しています。カリフォルニア州の場合、州政府の規制により発電事業者は蓄電設備の設置が義務付けられており、それが蓄電技術市場の促進につながっています。ただし、グリッドスケール蓄電技術の活用方法・技術形態は非常に複雑なため、その経済性について正確に理解するのは非常に困難となっています。

当レポートでは、グリッドスケール蓄電技術 (電力網用蓄電池) の市場動向および技術・コスト構造について分析し、蓄電技術のライフサイクル費用の構造・動向および実体、代表的な技術 (リチウムイオン電池、CAES (圧縮空気電気貯蔵)) の活用事例、今後の蓄電コストの動向見通しなどについて調査・考察しております。

第1章 イントロダクション

第2章 代表的なグリッドスケール蓄電技術:概要

  • 揚水発電 (PHS)
  • リチウムイオン電池
  • 最新型の鉛蓄電池
  • ナトリウム硫黄電池
  • 圧縮空気電気貯蔵 (CAES)
  • フライホイール
  • その他の技術

第3章 グリッドスケール蓄電の用途

  • 一般的な用途と機能
  • 商業利用の代表的事例
    • 再生可能エネルギーのタイムシフト:カリフォルニア州
    • 資源最適配分 (RA):カリフォルニア州
    • PJMの周波数調整
  • 貯蔵方式と競合するオプション
    • 従来型発電所の (ごく一般的な) 改修

第4章 ライフサイクル費用の計測方法とモデリング

  • 概論
  • ライフサイクル費用のモデリング
  • リチウムイオン電池:電力網向け利用の参照事例
    • CAPEX (資本支出額) のコスト要因に関する議論
    • OPEX (運用支出額) のコスト要因に関する議論
    • その他のライフサイクル費用の要素
  • CAES:中間負荷資産の参照事例
    • CAPEXのコスト要因に関する議論
    • OPEXのコスト要因に関する議論
  • 参照事例の結論に関する議論
    • リチウムイオン電池
    • CAES
  • その他の蓄電オプションに関する、ライフサイクル費用の課題

第5章 今後のコスト動向

関連調査

略語一覧

  • 付録1 最新のグリッドスケール蓄電の詳細な評価
  • 付録2 リチウムイオン電池のライフサイクルコストの参照事例データ
  • 付録3 リチウムイオン電池のOPEXの参照事例:年間内訳
  • 付録4 CASEのライフサイクル費用の参照事例データ

図表一覧

目次

In-depth analysis of lifetime costs of grid scale energy storage technologies

Recently the proliferation of grid connected renewables, given their intermittency, has accentuated the need for energy storage technologies. In California, regulation has made it compulsory for utilities to install storage, accelerating the adoption of these technologies.

However, given the myriad applications and technology options available it is difficult to understand the economics of storage technologies.

The aim of this report is to provide a realistic lifecycle cost analysis of the main grid-scale electrical storage technologies, particularly Lithium Ion (Li-ion) and Compressed Air Energy Storage (CAES), as well as insight into the expected evolution of storage costs.

Topics covered in the report:

  • Lifetime cost analysis: Find out what it costs to build and operate utility scale Li-ion and CAES storage facilities
  • Cost breakdown: Get insight into the cost of each component part of a storage system
  • Expected cost reductions: Get an insight into the factors that could drive down the costs of grid scale energy storage solutions
  • Pros and cons of energy storage technologies: Learn how storage technologies compare against each other and against non-storage options which deliver similar benefits
  • Practical applications of energy storage technologies: Get clarity on how storage technologies have actually been deployed in the USA and beyond

This report provides answers to these questions:

  • What are the life time costs of utility scale Li-ion and CAES storage?
  • What are the pros and cons of the main energy storage technologies?
  • Which technologies have been commercially deployed and what are their applications?
  • Which energy storage options are more cost effective for each application?
  • What are the expected cost reductions of the main technologies in a five year time-frame?

Table of Contents

  • Acknowledgements
  • List of Figures
  • List of Tables
  • Executive Summary

1. Introduction

2. Overview of leading grid-scale storage technologies

  • 2.1. Pumped hydroelectric storage (PHS)
  • 2.2. Lithium ion
  • 2.3. Advanced lead acid
  • 2.4. Sodium sulfur
  • 2.5. Compressed air energy storage (CAES)
  • 2.6. Flywheels
  • 2.7. Other technologies

3. Grid-scale applications of storage

  • 3.1. General applications and functions
  • 3.2. Leading commercial applications
    • 3.2.1. Renewable energy time shifting in California
    • 3.2.2. Resource Adequacy (RA) in California
    • 3.2.3. Frequency regulation in PJM
  • 3.3. Options that compete with storage
    • 3.3.1. Common modifications to conventional plant

4. Lifecycle cost methodology and modeling

  • 4.1. General
  • 4.2. Lifecycle cost modeling
  • 4.3. Li-ion - Energy application reference plant
    • 4.3.1. Discussion of CAPEX cost factors
    • 4.3.2. Discussion of OPEX cost factors
    • 4.3.3. Other lifecycle cost factors
  • 4.4. CAES intermediate load asset reference case
    • 4.4.1. Discussion of CAPEX cost factors
    • 4.4.2. Discussion of OPEX cost factors
  • 4.5. Discussion of reference case results
    • 4.5.1. Li-ion Battery
    • 4.5.2. CAES
  • 4.6. Lifecycle cost issues with other storage options

5. Future cost trends

References

Abbreviations

  • Appendix 1. Recent Detailed Evaluations of Grid-Scale Storage
  • Appendix 2. Data for Li-ion life cycle cost reference case
  • Appendix 3. Annual breakdown of for Li-ion OPEX reference case
  • Appendix 4. Data for CAES Lifecycle Cost Reference Case

List of Figures

  • Figure 1. Capacity ranges, and prevalence of leading grid-scale storage technologies
  • Figure 2. Distribution of small grid oriented storage technologies in recent utility evaluations (MW)
  • Figure 3. Share by leading technology represented by recent US utility evaluations
  • Figure 4. Pumped Hydro Storage (PHS)
  • Figure 5. Li-ion facility at the Salem Smart Power Center (5 MW)
  • Figure 6. Diagram of a sodium sulfur grid-scale battery system
  • Figure 7. Artist rendering for a CAES project under development in Texas
  • Figure 8. The 110 MW CAES plant in Alabama (US) operating for over 20 years
  • Figure 9. 20 MW advanced flywheel facility at Stephentown (NY, US) comprised of 1 MW “pods”
  • Figure 10. Grid-scale storage applications and suitable “generic” technology categories
  • Figure 11. The TurboPhase system
  • Figure 12. CAPEX of non-storage options ranges ($/kW)
  • Figure 13. Performance of different Li-ion chemistries
  • Figure 14. Battery System installed capital costs for Li-ion reference case
  • Figure 15. Li-ion reference case CAPEX life cycle cost factors
  • Figure 16. Li-ion reference case OPEX lifecycle cost factors
  • Figure 17. Possible five-year future scenario: reference case OPEX
  • Figure 18. Possible five-year future scenario: reference case CAPEX
  • Figure 19. Breakdown of CAES CAPEX (millions of US dollars)
  • Figure 20. CAEX CAPEX cost factors with more difficult underground geology (millions of US dollars)
  • Figure 21. CAES OPEX cost factors
  • Figure 22. Variability of monthly electricity prices in MISO
  • Figure 23. Variability of hourly electricity prices over a year in MISO
  • Figure 24. CAES OPEX under optimistic electricity pricing scenario (millions of US dollars)
  • Figure 25. Cost of Li-ion projects based on cost figures from DOE database ($/kW)
  • Figure 26. Li-ion cost reduction based on both public and confidential cost figures ($/kW)
  • Figure 27. Cost reduction trend expected based on data in above table ($/kWh)
  • Figure 28. Li-ion cost projections based on vehicle applications (2012-2025)
  • Figure 29. Li-ion cost projections from recent utility evaluation

List of Tables

  • Table 1. Brief descriptions of grid functions potentially provided by storage
  • Table 2. Options that compete with grid-scale storage
  • Table 3. Li-ion reference case design parameters
  • Table 4. Principal CAPEX factors
  • Table 5. Principal OPEX factors
  • Table 6. CAES reference case design basis
  • Table 7. Principal CAPEX cost factors in a CAES facility
  • Table 8. Principal OPEX factors in a CAES facility
  • Table 9. Li-ion cost for projects delivered (or to be delivered) in year indicated
Back to Top